Investigation of energy management strategy based on deep reinforcement learning algorithm for multi-speed pure electric vehicles

强化学习 计算机科学 钢筋 人工智能 算法 工程类 结构工程
作者
Weiwei Yang,Daming Luo,Wenming Zhang,Nong Zhang
标识
DOI:10.1177/09544070241275427
摘要

With increasingly prominent problems such as environmental pollution and the energy crisis, the development of pure electric vehicles has attracted more and more attention. However, the short range is still one of the main reasons affecting consumer purchases. Therefore, an optimized energy management strategy (EMS) based on the Soft Actor-Critic (SAC) and Deep Deterministic Policy Gradient (DDPG) algorithm is proposed to minimize the energy loss for multi-speed pure electric vehicles, respectively, in this paper. Vehicle speed, acceleration, and battery SOC are selected as state variables, and the action space is set to the transmission gear. The reward function takes into account energy consumption and battery life. Simulation results reveal that the proposed EMS-based SAC has a better performance compared to DDPG in the NEDC cycle, manifested explicitly in the following three aspects: (1) the battery SOC decreases from 0.8 to 0.7339 and 0.73385, and the energy consumption consumes 5264.8 and 5296.6 kJ, respectively; (2) The maximumC-rate is 1.565 and 1.566, respectively; (3) the training efficiency of SAC is higher. Therefore, the SAC-based energy management strategy proposed in this paper has a faster convergence speed and gradually approaches the optimal energy-saving effect with a smaller gap. In the WLTC condition, the SAC algorithm reduces 24.1 kJ of energy compared with DDPG, and the C-rate of SAC is below 1. The maximum value is 1.565, which aligns with the reasonable operating range of vehicle batteries. The results show that the SAC algorithm is adaptable under different working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fier在哪完成签到,获得积分10
刚刚
刚刚
上好佳发布了新的文献求助10
刚刚
1秒前
寡王一路硕博关注了科研通微信公众号
1秒前
岸芷诺苏完成签到,获得积分20
2秒前
WHH发布了新的文献求助10
2秒前
Gryphon发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
栗子完成签到 ,获得积分10
5秒前
FreeRice发布了新的文献求助10
6秒前
7秒前
zqw完成签到,获得积分10
7秒前
norberta发布了新的文献求助10
7秒前
zyj完成签到,获得积分10
7秒前
8秒前
CodeCraft应助lianliyou采纳,获得10
9秒前
meteor发布了新的文献求助10
9秒前
阿宁发布了新的文献求助10
9秒前
英俊的铭应助yuyueyang采纳,获得10
9秒前
9秒前
10秒前
WHH完成签到,获得积分10
10秒前
阿皮完成签到,获得积分10
10秒前
亚尔完成签到,获得积分10
10秒前
11秒前
领导范儿应助上好佳采纳,获得10
11秒前
11秒前
12秒前
13秒前
线条完成签到 ,获得积分10
14秒前
自然的珩完成签到,获得积分10
14秒前
tjzhu2023发布了新的文献求助10
14秒前
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
15秒前
sam应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148089
求助须知:如何正确求助?哪些是违规求助? 2799137
关于积分的说明 7833616
捐赠科研通 2456348
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628086
版权声明 601655