Prediction of Ischemic Stroke Functional Outcomes from Acute-Phase Noncontrast CT and Clinical Information

医学 冲程(发动机) 缺血性中风 放射科 内科学 心脏病学 缺血 机械工程 工程类
作者
Yongkai Liu,Yannan Yu,Jiahong Ouyang,Bin Jiang,Sophie Ostmeier,Jia Wang,Sarah Lu-Liang,Yirong Yang,Guang Yang,Patrik Michel,David S. Liebeskind,Maarten G. Lansberg,Michael E. Moseley,Jeremy J Heit,Max Wintermark,Gregory W. Albers,Greg Zaharchuk
出处
期刊:Radiology [Radiological Society of North America]
卷期号:313 (1) 被引量:1
标识
DOI:10.1148/radiol.240137
摘要

Background Clinical outcome prediction based on acute-phase ischemic stroke data is valuable for planning health care resources, designing clinical trials, and setting patient expectations. Existing methods require individualized features and often involve manually engineered, time-consuming postprocessing activities. Purpose To predict the 90-day modified Rankin Scale (mRS) score with a deep learning (DL) model fusing noncontrast-enhanced CT (NCCT) and clinical information from the acute phase of stroke. Materials and Methods This retrospective study included data from six patient datasets from four multicenter trials and two registries. The DL-based imaging and clinical model was trained by using NCCT data obtained 1-7 days after baseline imaging and clinical data (age; sex; baseline and 24-hour National Institutes of Health Stroke Scale scores; and history of hypertension, diabetes, and atrial fibrillation). This model was compared with models based on either NCCT or clinical information alone. Model-specific mRS score prediction accuracy, mRS score accuracy within 1 point of the actual mRS score, mean absolute error (MAE), and performance in identifying unfavorable outcomes (mRS score, >2) were evaluated. Results A total of 1335 patients (median age, 71 years; IQR, 60-80 years; 674 female patients) were included for model development and testing through sixfold cross validation, with distributions of 979, 133, and 223 patients across training, validation, and test sets in each of the six cross-validation folds, respectively. The fused model achieved an MAE of 0.94 (95% CI: 0.89, 0.98) for predicting the specific mRS score, outperforming the imaging-only (MAE, 1.10; 95% CI: 1.05, 1.16;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助炸鸡加热采纳,获得10
刚刚
Ferry完成签到,获得积分10
刚刚
11秒前
菓小柒完成签到 ,获得积分10
13秒前
13秒前
阿航完成签到,获得积分10
13秒前
13秒前
Lyn发布了新的文献求助30
17秒前
炸鸡加热发布了新的文献求助10
17秒前
悟空发布了新的文献求助10
18秒前
Sissi完成签到 ,获得积分10
19秒前
ciiiv完成签到 ,获得积分10
21秒前
Soir完成签到 ,获得积分10
21秒前
21秒前
syt发布了新的文献求助10
25秒前
25秒前
儒雅的焦完成签到,获得积分10
26秒前
爱静静应助Zoom采纳,获得10
26秒前
奇异果完成签到 ,获得积分10
26秒前
26秒前
清爽尔安发布了新的文献求助10
27秒前
Jasper应助悟空采纳,获得10
28秒前
本人很懒没有名字完成签到 ,获得积分10
31秒前
Lyn完成签到,获得积分10
34秒前
Ohoooo完成签到,获得积分10
36秒前
清爽尔安完成签到,获得积分10
37秒前
香蕉觅云应助Ann采纳,获得10
38秒前
搜集达人应助祥梦伊飞采纳,获得30
38秒前
Owen应助单纯面包采纳,获得10
44秒前
Zoom完成签到,获得积分10
44秒前
QP34完成签到 ,获得积分10
45秒前
45秒前
彭于晏应助炸鸡加热采纳,获得10
46秒前
knn发布了新的文献求助10
46秒前
xianyu完成签到,获得积分10
49秒前
麦乐兴完成签到,获得积分10
50秒前
50秒前
51秒前
52秒前
54秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023