Prediction of Ischemic Stroke Functional Outcomes from Acute-Phase Noncontrast CT and Clinical Information

医学 冲程(发动机) 缺血性中风 放射科 内科学 心脏病学 缺血 机械工程 工程类
作者
Yongkai Liu,Yannan Yu,Jiahong Ouyang,Bin Jiang,Sophie Ostmeier,Jia Wang,Sarah Lu-Liang,Yirong Yang,Guang Yang,Patrik Michel,David S. Liebeskind,Maarten G. Lansberg,Michael E. Moseley,Jeremy J Heit,Max Wintermark,Gregory W. Albers,Greg Zaharchuk
出处
期刊:Radiology [Radiological Society of North America]
卷期号:313 (1) 被引量:1
标识
DOI:10.1148/radiol.240137
摘要

Background Clinical outcome prediction based on acute-phase ischemic stroke data is valuable for planning health care resources, designing clinical trials, and setting patient expectations. Existing methods require individualized features and often involve manually engineered, time-consuming postprocessing activities. Purpose To predict the 90-day modified Rankin Scale (mRS) score with a deep learning (DL) model fusing noncontrast-enhanced CT (NCCT) and clinical information from the acute phase of stroke. Materials and Methods This retrospective study included data from six patient datasets from four multicenter trials and two registries. The DL-based imaging and clinical model was trained by using NCCT data obtained 1-7 days after baseline imaging and clinical data (age; sex; baseline and 24-hour National Institutes of Health Stroke Scale scores; and history of hypertension, diabetes, and atrial fibrillation). This model was compared with models based on either NCCT or clinical information alone. Model-specific mRS score prediction accuracy, mRS score accuracy within 1 point of the actual mRS score, mean absolute error (MAE), and performance in identifying unfavorable outcomes (mRS score, >2) were evaluated. Results A total of 1335 patients (median age, 71 years; IQR, 60-80 years; 674 female patients) were included for model development and testing through sixfold cross validation, with distributions of 979, 133, and 223 patients across training, validation, and test sets in each of the six cross-validation folds, respectively. The fused model achieved an MAE of 0.94 (95% CI: 0.89, 0.98) for predicting the specific mRS score, outperforming the imaging-only (MAE, 1.10; 95% CI: 1.05, 1.16;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯呢发布了新的文献求助10
刚刚
vivienne完成签到,获得积分10
刚刚
搜集达人应助2021的萌爷爷采纳,获得10
刚刚
烟花不能太放肆关注了科研通微信公众号
刚刚
zyy完成签到,获得积分10
刚刚
1秒前
1秒前
wanci应助细腻晓露采纳,获得10
1秒前
Lucas应助XinyiZhang采纳,获得10
2秒前
科研通AI2S应助芋头采纳,获得10
3秒前
瘦瘦的铅笔完成签到 ,获得积分10
3秒前
manan发布了新的文献求助10
3秒前
01259发布了新的文献求助30
3秒前
3秒前
斯文败类应助zyh945采纳,获得10
3秒前
南山无梅落完成签到 ,获得积分10
3秒前
淡定吃吃完成签到,获得积分10
3秒前
科研通AI5应助称心砖头采纳,获得10
4秒前
淡淡从蕾完成签到,获得积分10
4秒前
Ehgnix完成签到,获得积分10
4秒前
嘴嘴是大嘴007完成签到,获得积分10
5秒前
5秒前
但愿完成签到 ,获得积分10
5秒前
犹豫的一斩应助Pangsj采纳,获得10
6秒前
Jenny应助wjs0406采纳,获得10
6秒前
6秒前
酒九发布了新的文献求助10
6秒前
落晨发布了新的文献求助10
7秒前
包容可乐完成签到,获得积分10
7秒前
8秒前
眼睛大的一曲完成签到,获得积分10
8秒前
9秒前
英俊的铭应助wu采纳,获得10
9秒前
认真的飞扬完成签到,获得积分10
9秒前
9秒前
雪白的西牛完成签到,获得积分20
9秒前
芋头完成签到,获得积分10
9秒前
ntxiaohu完成签到,获得积分10
10秒前
四火完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740