Using widely targeted metabolomics profiling to explore differences in constituents of three Bletilla species

仿形(计算机编程) 代谢组学 计算生物学 生物 生物信息学 数据科学 计算机科学 操作系统
作者
Wanhai Xu,Jian Huang,Peilong Wang,Yanping Yang,Shuangbin Fu,Zhen Ying,Zhuang Zhou
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74204-y
摘要

Bletilla striata has been used in traditional Chinese medicine for thousands of years to treat a variety of health diseases. Currently, metabolic causes of differences in medicinal values are unknown, due to the lack of a large-scale and comprehensive investigation of metabolites in Bletilla species. In order to gain a better understanding of the major chemical constituents responsible for the medicinal value, this study aimed to explore the metabolomic differences among three Bletilla species (Bletilla striata: Bs, Bletilla ochracea: Bo and Bletilla formosana: Bf). There were 258 different metabolites between 'Bo' and 'Bf', the contents of 109 metabolites had higher abundance, while 149 metabolites showed less accumulation. There were 165 different metabolites between the 'Bs' and 'Bf', content of 72 metabolites was increased and content of 93 metabolites was decreased. There were 239 different metabolites between the 'Bs' and 'Bo', content of 145 metabolites was increased and content of 94 metabolites was decreased. In the Bo_vs_Bf, Bs_vs_Bf and Bs_vs_Bo groups, the major differential categories were flavonoids, phenolic acids, organic acids and alkaloids. Moreover, the differential metabolites were clustered into clear and distinct profiles via K-means analysis. In addition, the major differential categories were flavonoids, phenolic acids, organic acids and alkaloids. The 'Flavonoid biosynthesis' (ko00941) and 'Phenylalanine metabolism' (ko00360) pathways were significantly enriched in Bo_vs_Bf, Bs_vs_Bf and Bs_vs_Bo comparisons. These results clarify the metabolomics in different Bletilla species, as well as providing basis for the phamaceutical value of novel species of Bletilla.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiongxianmei发布了新的文献求助10
刚刚
紧张的天与完成签到,获得积分10
刚刚
1秒前
吖吖发布了新的文献求助20
1秒前
852应助carbon-dots采纳,获得10
1秒前
栀晴完成签到 ,获得积分10
2秒前
甜甜圈完成签到 ,获得积分10
4秒前
略略略发布了新的文献求助10
5秒前
科研通AI5应助简单从丹采纳,获得10
5秒前
7秒前
xiongxianmei完成签到,获得积分10
8秒前
8秒前
永远发布了新的文献求助10
11秒前
12秒前
mono发布了新的文献求助10
13秒前
高挑的白旋风完成签到,获得积分10
14秒前
17秒前
永远完成签到,获得积分10
17秒前
mmyhn应助丙1丙2丙采纳,获得10
18秒前
充电宝应助JXDeng采纳,获得10
19秒前
WSX完成签到,获得积分20
20秒前
20秒前
嘎嘎发布了新的文献求助10
20秒前
wind发布了新的文献求助10
21秒前
不懈奋进应助仨dsk采纳,获得30
22秒前
23秒前
llwl完成签到,获得积分10
24秒前
小蘑菇应助lxf采纳,获得10
25秒前
完美世界应助无心的土豆采纳,获得10
26秒前
26秒前
26秒前
Umair发布了新的文献求助10
27秒前
27秒前
若ruofeng应助janice采纳,获得10
28秒前
Hello应助追寻第九王国采纳,获得10
29秒前
carbon-dots发布了新的文献求助10
29秒前
hua发布了新的文献求助10
30秒前
金jin完成签到,获得积分10
30秒前
31秒前
vlots应助kingwill采纳,获得30
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901