Efficient H2 production in a novel separator electrode assembly (SEA) microbial electrolysis cell

阴极 阳极 化学工程 分离器(采油) 微生物燃料电池 电解 材料科学 电极 废水 化学 废物管理 制浆造纸工业 环境科学 环境工程 物理 物理化学 工程类 电解质 热力学 生物化学
作者
Na Zhao,Dawei Liang,Hong Liu,Shujuan Meng,Xiaohu Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:451: 138561-138561 被引量:4
标识
DOI:10.1016/j.cej.2022.138561
摘要

MECs convert organics from wastewater to H2 as a fuel, which has a higher value than CH4 produced by anaerobic digestion. So far, the deterioration of H2 recovery during long-term operation is considered the most concerning obstacle for MEC development and is mainly caused by H2 consumption by exoelectrogens, methanogens, and homoacetogens, especially in a single-chamber MEC. Thus, reducing H2 consumption is of great scientific significance to improve effective H2 recovery in MECs. Previous studies have adopted diverse measures to reduce H2 consumption in MEC, but still not efficient and sustainable for long-term operation. Inspired by the design of a diaper, a novel configuration of separator-electrode assembly (SEA) was developed, where the cathode was sandwiched between a hydrophilic polyvinylidenedifluoride (PVDF) membrane and a hydrophobic polytetrafluoroethylene (PTFE) membrane. The porous PVDF membrane is highly water-permeable to separate anode and cathode, guarantee proton transfer, and form a "water barrier" to effectively block H2 crossover. The PTFE membrane is gas breathable to accelerate H2 diffuse out of the membrane to a gas collecting chamber and prevent water leakage. By the virtue of the SEA cathode design, SEA-MECs demonstrated a high current density of 482.5–515 A/m3 and a high H2 production rate of 4.53–5.02 m3/m3/d for over 30 days with up to 90 % cathodic hydrogen recovery rate, under 0.8 V of applied voltage without any chemical bacterial inhibitors. This study proves that a novel MEC configuration design is greatly important, and by no means, will shed light on effective H2 harvesting from wastewater.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江漓完成签到 ,获得积分10
1秒前
ahhhh完成签到,获得积分20
1秒前
2秒前
Jasper应助魏亚情采纳,获得10
2秒前
FashionBoy应助咻咻采纳,获得10
2秒前
小马甲应助Alex采纳,获得10
2秒前
3秒前
Siriluck完成签到 ,获得积分10
3秒前
llc完成签到,获得积分10
3秒前
尊敬兔子完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
ahhhh发布了新的文献求助10
4秒前
4秒前
wy.he举报Ybobo求助涉嫌违规
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
summer完成签到,获得积分10
5秒前
我是老大应助九琅采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
return发布了新的文献求助100
7秒前
ENEN完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
wyh完成签到 ,获得积分10
9秒前
sophia完成签到,获得积分20
9秒前
ENEN发布了新的文献求助10
9秒前
xiaofang发布了新的文献求助10
10秒前
深海鱼完成签到,获得积分10
10秒前
传奇3应助章习文采纳,获得10
10秒前
项人发布了新的文献求助10
10秒前
10秒前
在水一方应助ahhhh采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774487
求助须知:如何正确求助?哪些是违规求助? 5617838
关于积分的说明 15435874
捐赠科研通 4906905
什么是DOI,文献DOI怎么找? 2640476
邀请新用户注册赠送积分活动 1588298
关于科研通互助平台的介绍 1543281