Artificial Intelligence for Urology Research: The Holy Grail of Data Science or Pandora’s Box of Misinformation?

人口 入射(几何) 医学 误传 全国健康与营养检查调查 流行病学 人口学 病理 计算机科学 环境卫生 数学 计算机安全 几何学 社会学
作者
Ryan M. Blake,Johnathan A. Khusid
出处
期刊:Journal of Endourology [Mary Ann Liebert]
标识
DOI:10.1089/end.2023.0703
摘要

Introduction Artificial intelligence tools such as the large language models (LLMs) Bard and ChatGPT have generated significant research interest. Utilization of these LLMs to study epidemiology of a target population could benefit urologists. We investigated whether Bard and ChatGPT can perform a large-scale calculation of the incidence and prevalence of kidney stone disease. Materials and Methods We obtained reference values from two published studies which used the National Health and Nutrition Examination Survey (NHANES) database to calculate the prevalence and incidence of kidney stone disease. We then tested the capability of Bard and ChatGPT to perform similar calculations using two different methods. First, we instructed the LLMs to access the datasets and independently perform the calculation. Second, we instructed the interfaces to generate customized computer code which could perform the calculation on downloaded datasets. Results While ChatGPT denied the ability to access and perform calculations on the NHANES database, Bard intermittently claimed the ability to do so. Bard provided either accurate results or inaccurate and inconsistent results. For example, Bard's "calculations" for the incidence of kidney stones from 2015-2018 were 2.1% (95% CI: 1.5-2.7), 1.75% (95% CI: 1.6-1.9), and 0.8% (95% CI 0.7-0.9), while the published number was 2.1% (95% CI 1.5–2.7). Bard provided discrete mathematical details of its calculations, however when prompted further, admitted to having obtained the numbers from online sources, including our chosen reference papers, rather than from a de novo calculation. Both LLMs were able to produce code (Python) to use on the downloaded NHANES datasets, however these would not readily execute. Conclusions ChatGPT and Bard are currently incapable of performing epidemiological calculations and lack transparency and accountability. Caution should be used, particularly with Bard, as claims of its capabilities were convincingly misleading, and results were inconsistent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm发布了新的文献求助10
1秒前
Realrr发布了新的文献求助10
2秒前
哈哈哈发布了新的文献求助10
3秒前
个性的紫菜应助进击的研狗采纳,获得200
4秒前
4秒前
思源应助田田田田采纳,获得10
5秒前
NexusExplorer应助激昂的背包采纳,获得10
5秒前
夏林发布了新的文献求助10
5秒前
FayWang完成签到,获得积分10
6秒前
在水一方应助科研顺风采纳,获得10
8秒前
SciGPT应助yaya采纳,获得10
8秒前
木叶研发布了新的文献求助30
9秒前
9秒前
高琦完成签到 ,获得积分10
9秒前
10秒前
Endlessway完成签到,获得积分0
10秒前
10秒前
Jasper应助咕咕咕采纳,获得30
11秒前
李贝宁完成签到,获得积分10
11秒前
qiushui完成签到,获得积分10
11秒前
12秒前
www发布了新的文献求助20
13秒前
13秒前
巧克力蛋挞完成签到,获得积分10
13秒前
14秒前
14秒前
夏林完成签到,获得积分10
14秒前
yang完成签到,获得积分20
15秒前
刘家斌完成签到,获得积分10
15秒前
18秒前
18秒前
leslie完成签到,获得积分10
18秒前
18秒前
18秒前
田田田田发布了新的文献求助10
20秒前
羽婕发布了新的文献求助10
21秒前
土豆完成签到 ,获得积分10
21秒前
cuijiawen发布了新的文献求助30
22秒前
23秒前
隐形曼青应助yang采纳,获得10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3251986
求助须知:如何正确求助?哪些是违规求助? 2894895
关于积分的说明 8283768
捐赠科研通 2563527
什么是DOI,文献DOI怎么找? 1391650
科研通“疑难数据库(出版商)”最低求助积分说明 651925
邀请新用户注册赠送积分活动 628894