Flexible drug-target interaction prediction with interactive information extraction and trade-off

计算机科学 萃取(化学) 信息抽取 机器学习 人工智能 药品 药物与药物的相互作用 数据挖掘 药理学 色谱法 医学 化学
作者
Yunfei He,Chenyuan Sun,Li Meng,Yiwen Zhang,Rui Mao,Fei Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123821-123821 被引量:4
标识
DOI:10.1016/j.eswa.2024.123821
摘要

Drug-target interaction (DTI) prediction refers to the use of computational methods and models to predict the interaction between drugs and biological targets. DTI can help researchers understand the mechanism of action of drugs, discover new drug targets, and screen drug candidates. Recently, a large number of DTI models integrating deep drug-target interaction features have emerged to make up for the dilemma of incomplete information on shallow drug and target features. However, these models ignore the challenge of overlapping interaction information by simply integrating deep interaction information. This paper proposes a flexible DTI with interactive information extraction and trade-off (FDTIIT) to address the above challenges. The main idea of FDTIIT is to use flexible mutual attention to extract interaction information about drugs and targets, and then limit the dependence between them to avoid redundant information. Specifically, FDTIIT mainly includes three parts: drug and target representation, drug-target interactive information extraction, and drug-target interactive information trade-off. Among them, the drug and target representation module mainly uses the graph convolutional network and convolutional neural network to learn the representation of drugs and targets. Then, the drug-target interactive information extraction module extracts the drug information hidden in the target and the target information hidden in the drug based on mutual attention. To avoid possible information overlap between drug representation and target representation after the fusion of interaction information, FDTIIT designs an interactive information trade-off module. This module limits the dependence between drug and target representation, providing more comprehensive information to support high-performance drug-target interaction prediction. Multiple experiments designed on three publicly available datasets validated FDTIIT's effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不想学习发布了新的文献求助10
刚刚
liuxia完成签到,获得积分10
1秒前
1秒前
婷婷发布了新的文献求助10
2秒前
Winnie发布了新的文献求助10
2秒前
张靖雯发布了新的文献求助10
3秒前
心灵美鑫完成签到 ,获得积分10
4秒前
辛勤芷容完成签到,获得积分10
4秒前
乐乐应助QinQin采纳,获得10
4秒前
silence发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
难过的班完成签到,获得积分10
7秒前
别说话发布了新的文献求助10
8秒前
Azyyyy完成签到,获得积分10
8秒前
8秒前
9秒前
大可奇完成签到,获得积分10
10秒前
魔猿发布了新的文献求助10
10秒前
英俊的铭应助念念采纳,获得10
10秒前
yh发布了新的文献求助50
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
今后应助www采纳,获得10
12秒前
大可奇发布了新的文献求助10
13秒前
13秒前
英俊的铭应助zzr123采纳,获得10
13秒前
13秒前
拾玖应助zheng采纳,获得20
14秒前
吴晗发布了新的文献求助30
14秒前
超威发布了新的文献求助10
15秒前
15秒前
zl1733发布了新的文献求助10
15秒前
16秒前
16秒前
王佳完成签到,获得积分10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730272
求助须知:如何正确求助?哪些是违规求助? 5322398
关于积分的说明 15318370
捐赠科研通 4876855
什么是DOI,文献DOI怎么找? 2619709
邀请新用户注册赠送积分活动 1569121
关于科研通互助平台的介绍 1525755