Flexible drug-target interaction prediction with interactive information extraction and trade-off

计算机科学 萃取(化学) 信息抽取 机器学习 人工智能 药品 药物与药物的相互作用 数据挖掘 药理学 色谱法 医学 化学
作者
Yunfei He,Chenyuan Sun,Li Meng,Yiwen Zhang,Rui Mao,Fei Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123821-123821 被引量:4
标识
DOI:10.1016/j.eswa.2024.123821
摘要

Drug-target interaction (DTI) prediction refers to the use of computational methods and models to predict the interaction between drugs and biological targets. DTI can help researchers understand the mechanism of action of drugs, discover new drug targets, and screen drug candidates. Recently, a large number of DTI models integrating deep drug-target interaction features have emerged to make up for the dilemma of incomplete information on shallow drug and target features. However, these models ignore the challenge of overlapping interaction information by simply integrating deep interaction information. This paper proposes a flexible DTI with interactive information extraction and trade-off (FDTIIT) to address the above challenges. The main idea of FDTIIT is to use flexible mutual attention to extract interaction information about drugs and targets, and then limit the dependence between them to avoid redundant information. Specifically, FDTIIT mainly includes three parts: drug and target representation, drug-target interactive information extraction, and drug-target interactive information trade-off. Among them, the drug and target representation module mainly uses the graph convolutional network and convolutional neural network to learn the representation of drugs and targets. Then, the drug-target interactive information extraction module extracts the drug information hidden in the target and the target information hidden in the drug based on mutual attention. To avoid possible information overlap between drug representation and target representation after the fusion of interaction information, FDTIIT designs an interactive information trade-off module. This module limits the dependence between drug and target representation, providing more comprehensive information to support high-performance drug-target interaction prediction. Multiple experiments designed on three publicly available datasets validated FDTIIT's effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Yiaxuan采纳,获得20
1秒前
好好干活发布了新的文献求助10
1秒前
1秒前
温大善人完成签到,获得积分10
1秒前
YH完成签到,获得积分10
3秒前
MINE完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
俞杨锦完成签到,获得积分10
6秒前
qingmoheng应助明亮的友蕊采纳,获得10
6秒前
Stageruner完成签到,获得积分10
7秒前
香蕉觅云应助过儿采纳,获得10
7秒前
7秒前
bkagyin应助拉长的保温杯采纳,获得10
8秒前
8秒前
8秒前
缥缈鞯发布了新的文献求助10
8秒前
MINE发布了新的文献求助20
9秒前
丘比特应助一区是只猫采纳,获得10
9秒前
欧云齐发布了新的文献求助10
9秒前
张小强发布了新的文献求助10
9秒前
彭意发布了新的文献求助10
9秒前
黄晓梅完成签到,获得积分20
10秒前
情怀应助sunanana采纳,获得10
10秒前
小张同学发布了新的文献求助10
10秒前
好柿豆花生完成签到,获得积分10
10秒前
10秒前
XUXU完成签到,获得积分10
11秒前
wanci应助西西采纳,获得10
11秒前
星辰大海应助真不错采纳,获得10
11秒前
崔建发布了新的文献求助10
11秒前
12秒前
zc发布了新的文献求助10
12秒前
顺利毕业应助季博常采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524349
求助须知:如何正确求助?哪些是违规求助? 4614939
关于积分的说明 14545569
捐赠科研通 4552859
什么是DOI,文献DOI怎么找? 2495047
邀请新用户注册赠送积分活动 1475675
关于科研通互助平台的介绍 1447419