Flexible drug-target interaction prediction with interactive information extraction and trade-off

计算机科学 萃取(化学) 信息抽取 机器学习 人工智能 药品 药物与药物的相互作用 数据挖掘 药理学 色谱法 医学 化学
作者
Yunfei He,Chenyuan Sun,Li Meng,Yiwen Zhang,Rui Mao,Fei Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123821-123821 被引量:4
标识
DOI:10.1016/j.eswa.2024.123821
摘要

Drug-target interaction (DTI) prediction refers to the use of computational methods and models to predict the interaction between drugs and biological targets. DTI can help researchers understand the mechanism of action of drugs, discover new drug targets, and screen drug candidates. Recently, a large number of DTI models integrating deep drug-target interaction features have emerged to make up for the dilemma of incomplete information on shallow drug and target features. However, these models ignore the challenge of overlapping interaction information by simply integrating deep interaction information. This paper proposes a flexible DTI with interactive information extraction and trade-off (FDTIIT) to address the above challenges. The main idea of FDTIIT is to use flexible mutual attention to extract interaction information about drugs and targets, and then limit the dependence between them to avoid redundant information. Specifically, FDTIIT mainly includes three parts: drug and target representation, drug-target interactive information extraction, and drug-target interactive information trade-off. Among them, the drug and target representation module mainly uses the graph convolutional network and convolutional neural network to learn the representation of drugs and targets. Then, the drug-target interactive information extraction module extracts the drug information hidden in the target and the target information hidden in the drug based on mutual attention. To avoid possible information overlap between drug representation and target representation after the fusion of interaction information, FDTIIT designs an interactive information trade-off module. This module limits the dependence between drug and target representation, providing more comprehensive information to support high-performance drug-target interaction prediction. Multiple experiments designed on three publicly available datasets validated FDTIIT's effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆⑧完成签到,获得积分10
2秒前
不劳而获完成签到 ,获得积分10
7秒前
JUN完成签到,获得积分10
8秒前
shacodow完成签到,获得积分10
9秒前
ll完成签到,获得积分10
11秒前
瞿人雄完成签到,获得积分10
12秒前
龙弟弟完成签到 ,获得积分10
13秒前
没心没肺完成签到,获得积分10
14秒前
学术霸王完成签到,获得积分10
15秒前
1002SHIB完成签到,获得积分10
16秒前
nihaolaojiu完成签到,获得积分10
16秒前
sheetung完成签到,获得积分10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
41秒前
路漫漫其修远兮完成签到 ,获得积分10
42秒前
月下荷花完成签到 ,获得积分10
42秒前
小山己几完成签到,获得积分10
48秒前
李音完成签到 ,获得积分10
55秒前
七厘米发布了新的文献求助10
55秒前
哥哥发布了新的文献求助10
1分钟前
周周南完成签到 ,获得积分10
1分钟前
1分钟前
Brenda完成签到,获得积分10
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
颜小喵完成签到 ,获得积分10
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
七厘米完成签到,获得积分10
1分钟前
单纯无声完成签到 ,获得积分10
1分钟前
平凡世界完成签到 ,获得积分10
1分钟前
Neko完成签到,获得积分10
1分钟前
fbwg完成签到,获得积分10
1分钟前
Johan完成签到 ,获得积分10
1分钟前
松柏完成签到 ,获得积分10
2分钟前
Song完成签到 ,获得积分10
2分钟前
孙朱珠完成签到,获得积分10
2分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
feiyang完成签到 ,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助www采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370