Flexible drug-target interaction prediction with interactive information extraction and trade-off

计算机科学 萃取(化学) 信息抽取 机器学习 人工智能 药品 药物与药物的相互作用 数据挖掘 药理学 色谱法 医学 化学
作者
Yunfei He,Chenyuan Sun,Li Meng,Yiwen Zhang,Rui Mao,Fei Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123821-123821 被引量:4
标识
DOI:10.1016/j.eswa.2024.123821
摘要

Drug-target interaction (DTI) prediction refers to the use of computational methods and models to predict the interaction between drugs and biological targets. DTI can help researchers understand the mechanism of action of drugs, discover new drug targets, and screen drug candidates. Recently, a large number of DTI models integrating deep drug-target interaction features have emerged to make up for the dilemma of incomplete information on shallow drug and target features. However, these models ignore the challenge of overlapping interaction information by simply integrating deep interaction information. This paper proposes a flexible DTI with interactive information extraction and trade-off (FDTIIT) to address the above challenges. The main idea of FDTIIT is to use flexible mutual attention to extract interaction information about drugs and targets, and then limit the dependence between them to avoid redundant information. Specifically, FDTIIT mainly includes three parts: drug and target representation, drug-target interactive information extraction, and drug-target interactive information trade-off. Among them, the drug and target representation module mainly uses the graph convolutional network and convolutional neural network to learn the representation of drugs and targets. Then, the drug-target interactive information extraction module extracts the drug information hidden in the target and the target information hidden in the drug based on mutual attention. To avoid possible information overlap between drug representation and target representation after the fusion of interaction information, FDTIIT designs an interactive information trade-off module. This module limits the dependence between drug and target representation, providing more comprehensive information to support high-performance drug-target interaction prediction. Multiple experiments designed on three publicly available datasets validated FDTIIT's effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草莓酱发布了新的文献求助10
2秒前
烟花应助清淮采纳,获得10
2秒前
2秒前
烟花应助burger-v-采纳,获得10
2秒前
lifengxia完成签到,获得积分10
2秒前
柑橘味的朱完成签到,获得积分10
3秒前
mmmmm发布了新的文献求助60
4秒前
李健应助欢喜的之瑶采纳,获得10
6秒前
张钰完成签到,获得积分10
7秒前
微笑傲白发布了新的文献求助10
7秒前
8秒前
点点完成签到,获得积分10
8秒前
9秒前
李华发布了新的文献求助10
9秒前
能干的跳跳糖完成签到,获得积分10
10秒前
Hilua完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
你的完成签到 ,获得积分10
15秒前
张薯片完成签到 ,获得积分10
15秒前
JamesPei应助酷酷的可仁采纳,获得10
15秒前
16秒前
hiter完成签到,获得积分20
16秒前
妙柏完成签到,获得积分10
17秒前
今后应助饱满毒娘采纳,获得10
18秒前
善学以致用应助听听采纳,获得10
18秒前
PiaoGuo完成签到,获得积分10
18秒前
daxiangqaq发布了新的文献求助10
19秒前
KING发布了新的文献求助10
20秒前
xmyang完成签到,获得积分10
21秒前
李健应助害羞的广山采纳,获得10
21秒前
烟花应助熊阿阿采纳,获得10
22秒前
希望天下0贩的0应助YUQILV采纳,获得10
22秒前
22秒前
23秒前
23秒前
23秒前
单薄咖啡豆完成签到 ,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424649
求助须知:如何正确求助?哪些是违规求助? 4539035
关于积分的说明 14164752
捐赠科研通 4456058
什么是DOI,文献DOI怎么找? 2444033
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469