Flexible drug-target interaction prediction with interactive information extraction and trade-off

计算机科学 萃取(化学) 信息抽取 机器学习 人工智能 药品 药物与药物的相互作用 数据挖掘 药理学 色谱法 医学 化学
作者
Yunfei He,Chenyuan Sun,Li Meng,Yiwen Zhang,Rui Mao,Fei Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123821-123821 被引量:4
标识
DOI:10.1016/j.eswa.2024.123821
摘要

Drug-target interaction (DTI) prediction refers to the use of computational methods and models to predict the interaction between drugs and biological targets. DTI can help researchers understand the mechanism of action of drugs, discover new drug targets, and screen drug candidates. Recently, a large number of DTI models integrating deep drug-target interaction features have emerged to make up for the dilemma of incomplete information on shallow drug and target features. However, these models ignore the challenge of overlapping interaction information by simply integrating deep interaction information. This paper proposes a flexible DTI with interactive information extraction and trade-off (FDTIIT) to address the above challenges. The main idea of FDTIIT is to use flexible mutual attention to extract interaction information about drugs and targets, and then limit the dependence between them to avoid redundant information. Specifically, FDTIIT mainly includes three parts: drug and target representation, drug-target interactive information extraction, and drug-target interactive information trade-off. Among them, the drug and target representation module mainly uses the graph convolutional network and convolutional neural network to learn the representation of drugs and targets. Then, the drug-target interactive information extraction module extracts the drug information hidden in the target and the target information hidden in the drug based on mutual attention. To avoid possible information overlap between drug representation and target representation after the fusion of interaction information, FDTIIT designs an interactive information trade-off module. This module limits the dependence between drug and target representation, providing more comprehensive information to support high-performance drug-target interaction prediction. Multiple experiments designed on three publicly available datasets validated FDTIIT's effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
香蕉谷芹发布了新的文献求助10
3秒前
蓝天应助山楂采纳,获得10
4秒前
9秒前
年年完成签到,获得积分10
11秒前
明亮的念梦完成签到 ,获得积分10
12秒前
科研通AI2S应助健忘傲柏采纳,获得10
13秒前
13秒前
15秒前
18秒前
JamesPei应助小白采纳,获得10
19秒前
huagu722发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
21秒前
22秒前
ck完成签到 ,获得积分20
22秒前
24秒前
liuyepiao完成签到,获得积分10
25秒前
EurekaOvo发布了新的文献求助10
25秒前
李爱国应助zhou国兵采纳,获得10
26秒前
YangZhang发布了新的文献求助10
26秒前
27秒前
zwj发布了新的文献求助10
29秒前
思源应助yuanjie采纳,获得10
29秒前
留猪发布了新的文献求助10
29秒前
29秒前
毛毛发布了新的文献求助10
32秒前
Wangjingxuan发布了新的文献求助10
34秒前
qzs完成签到,获得积分10
36秒前
37秒前
赘婿应助SICHEN采纳,获得10
38秒前
Jrssion完成签到,获得积分10
39秒前
39秒前
闫123完成签到,获得积分10
40秒前
喜东东发布了新的文献求助30
43秒前
47秒前
xxs应助科研通管家采纳,获得10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869551
求助须知:如何正确求助?哪些是违规求助? 6453169
关于积分的说明 15661332
捐赠科研通 4985385
什么是DOI,文献DOI怎么找? 2688390
邀请新用户注册赠送积分活动 1630820
关于科研通互助平台的介绍 1588927