Flexible drug-target interaction prediction with interactive information extraction and trade-off

计算机科学 萃取(化学) 信息抽取 机器学习 人工智能 药品 药物与药物的相互作用 数据挖掘 药理学 色谱法 医学 化学
作者
Yunfei He,Chenyuan Sun,Li Meng,Yiwen Zhang,Rui Mao,Fei Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123821-123821 被引量:4
标识
DOI:10.1016/j.eswa.2024.123821
摘要

Drug-target interaction (DTI) prediction refers to the use of computational methods and models to predict the interaction between drugs and biological targets. DTI can help researchers understand the mechanism of action of drugs, discover new drug targets, and screen drug candidates. Recently, a large number of DTI models integrating deep drug-target interaction features have emerged to make up for the dilemma of incomplete information on shallow drug and target features. However, these models ignore the challenge of overlapping interaction information by simply integrating deep interaction information. This paper proposes a flexible DTI with interactive information extraction and trade-off (FDTIIT) to address the above challenges. The main idea of FDTIIT is to use flexible mutual attention to extract interaction information about drugs and targets, and then limit the dependence between them to avoid redundant information. Specifically, FDTIIT mainly includes three parts: drug and target representation, drug-target interactive information extraction, and drug-target interactive information trade-off. Among them, the drug and target representation module mainly uses the graph convolutional network and convolutional neural network to learn the representation of drugs and targets. Then, the drug-target interactive information extraction module extracts the drug information hidden in the target and the target information hidden in the drug based on mutual attention. To avoid possible information overlap between drug representation and target representation after the fusion of interaction information, FDTIIT designs an interactive information trade-off module. This module limits the dependence between drug and target representation, providing more comprehensive information to support high-performance drug-target interaction prediction. Multiple experiments designed on three publicly available datasets validated FDTIIT's effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
直率的宛海完成签到,获得积分10
刚刚
qin_zeng完成签到 ,获得积分10
1秒前
长情访梦完成签到,获得积分10
1秒前
流萤发布了新的文献求助10
1秒前
guohh发布了新的文献求助20
2秒前
2秒前
Pire给Pire的求助进行了留言
2秒前
雨诺完成签到,获得积分10
3秒前
小二郎应助林婧采纳,获得10
3秒前
852应助迷人书蝶采纳,获得10
3秒前
3秒前
Refuel完成签到,获得积分10
4秒前
科研通AI6应助mumu采纳,获得10
4秒前
4秒前
4秒前
4秒前
完美世界应助研友_P85D6Z采纳,获得10
4秒前
5秒前
共享精神应助载尘采纳,获得10
5秒前
人生苦短发布了新的文献求助10
6秒前
独特音响完成签到 ,获得积分10
6秒前
长情访梦发布了新的文献求助10
6秒前
灰光呀发布了新的文献求助10
7秒前
chenyu完成签到,获得积分10
7秒前
7秒前
伶俐的千凡完成签到,获得积分10
8秒前
ha完成签到,获得积分10
8秒前
欧阳同志完成签到 ,获得积分10
9秒前
xiaoxiao发布了新的文献求助10
10秒前
10秒前
LeaF完成签到,获得积分20
10秒前
暴躁的灭绝完成签到 ,获得积分10
10秒前
10秒前
雪霁完成签到,获得积分10
10秒前
小羊狂炫虾滑完成签到,获得积分10
11秒前
Tt发布了新的文献求助10
11秒前
zhaohu47发布了新的文献求助10
11秒前
11秒前
亚亚呀完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659101
求助须知:如何正确求助?哪些是违规求助? 4825945
关于积分的说明 15085232
捐赠科研通 4817760
什么是DOI,文献DOI怎么找? 2578352
邀请新用户注册赠送积分活动 1532998
关于科研通互助平台的介绍 1491722