Flexible drug-target interaction prediction with interactive information extraction and trade-off

计算机科学 萃取(化学) 信息抽取 机器学习 人工智能 药品 药物与药物的相互作用 数据挖掘 药理学 色谱法 化学 医学
作者
Yunfei He,Chenyuan Sun,Li Meng,Yiwen Zhang,Rui Mao,Fei Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123821-123821 被引量:4
标识
DOI:10.1016/j.eswa.2024.123821
摘要

Drug-target interaction (DTI) prediction refers to the use of computational methods and models to predict the interaction between drugs and biological targets. DTI can help researchers understand the mechanism of action of drugs, discover new drug targets, and screen drug candidates. Recently, a large number of DTI models integrating deep drug-target interaction features have emerged to make up for the dilemma of incomplete information on shallow drug and target features. However, these models ignore the challenge of overlapping interaction information by simply integrating deep interaction information. This paper proposes a flexible DTI with interactive information extraction and trade-off (FDTIIT) to address the above challenges. The main idea of FDTIIT is to use flexible mutual attention to extract interaction information about drugs and targets, and then limit the dependence between them to avoid redundant information. Specifically, FDTIIT mainly includes three parts: drug and target representation, drug-target interactive information extraction, and drug-target interactive information trade-off. Among them, the drug and target representation module mainly uses the graph convolutional network and convolutional neural network to learn the representation of drugs and targets. Then, the drug-target interactive information extraction module extracts the drug information hidden in the target and the target information hidden in the drug based on mutual attention. To avoid possible information overlap between drug representation and target representation after the fusion of interaction information, FDTIIT designs an interactive information trade-off module. This module limits the dependence between drug and target representation, providing more comprehensive information to support high-performance drug-target interaction prediction. Multiple experiments designed on three publicly available datasets validated FDTIIT's effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛夷发布了新的文献求助10
刚刚
超帅的碱应助lzx采纳,获得10
1秒前
AVEGETABLEBIRD关注了科研通微信公众号
2秒前
2秒前
Cheng完成签到 ,获得积分10
2秒前
脑洞疼应助李博士采纳,获得10
2秒前
Bio应助kingwill采纳,获得30
5秒前
超帅的访云完成签到,获得积分10
5秒前
强健的绮琴完成签到,获得积分10
5秒前
郝好完成签到 ,获得积分10
8秒前
香蕉觅云应助Accepted采纳,获得10
9秒前
斯文败类应助君知采纳,获得10
10秒前
科研通AI2S应助诸葛天采纳,获得10
13秒前
15秒前
15秒前
SYLH应助lyy66964193采纳,获得10
17秒前
17秒前
19秒前
羽宇发布了新的文献求助10
20秒前
20秒前
22秒前
23秒前
Jasper应助落寞振家采纳,获得10
23秒前
大模型应助zzzkyt采纳,获得10
23秒前
李博士发布了新的文献求助10
23秒前
muzi发布了新的文献求助10
24秒前
25秒前
拼搏梦旋完成签到,获得积分10
28秒前
思源应助不安的紫翠采纳,获得10
29秒前
29秒前
逸晨发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
一介书生完成签到 ,获得积分10
31秒前
大大怪发布了新的文献求助10
32秒前
顾涵山发布了新的文献求助20
32秒前
32秒前
李十七完成签到,获得积分10
33秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176