Flexible drug-target interaction prediction with interactive information extraction and trade-off

计算机科学 交互信息 代表(政治) 交互网络 信息抽取 机器学习 人工智能 药品 药物与药物的相互作用 基因 法学 政治学 政治 数学 统计 生物化学 精神科 化学 心理学
作者
Yunfei He,Chengjun Sun,Li Jun Meng,Yiwen Zhang,Rui Mao,Fei Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123821-123821
标识
DOI:10.1016/j.eswa.2024.123821
摘要

Drug-target interaction (DTI) prediction refers to the use of computational methods and models to predict the interaction between drugs and biological targets. DTI can help researchers understand the mechanism of action of drugs, discover new drug targets, and screen drug candidates. Recently, a large number of DTI models integrating deep drug-target interaction features have emerged to make up for the dilemma of incomplete information on shallow drug and target features. However, these models ignore the challenge of overlapping interaction information by simply integrating deep interaction information. This paper proposes a flexible DTI with interactive information extraction and trade-off (FDTIIT) to address the above challenges. The main idea of FDTIIT is to use flexible mutual attention to extract interaction information about drugs and targets, and then limit the dependence between them to avoid redundant information. Specifically, FDTIIT mainly includes three parts: drug and target representation, drug-target interactive information extraction, and drug-target interactive information trade-off. Among them, the drug and target representation module mainly uses the graph convolutional network and convolutional neural network to learn the representation of drugs and targets. Then, the drug-target interactive information extraction module extracts the drug information hidden in the target and the target information hidden in the drug based on mutual attention. To avoid possible information overlap between drug representation and target representation after the fusion of interaction information, FDTIIT designs an interactive information trade-off module. This module limits the dependence between drug and target representation, providing more comprehensive information to support high-performance drug-target interaction prediction. Multiple experiments designed on three publicly available datasets validated FDTIIT's effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
中中中发布了新的文献求助10
2秒前
木几木几完成签到 ,获得积分10
2秒前
徐榕发布了新的文献求助10
4秒前
澈哩应助xingkong采纳,获得10
4秒前
大个应助circlet采纳,获得10
6秒前
轻松水蓝发布了新的文献求助10
6秒前
认真映寒发布了新的文献求助10
8秒前
power完成签到,获得积分10
8秒前
9秒前
xia发布了新的文献求助10
10秒前
10秒前
真实的依白应助wangyinong采纳,获得20
12秒前
小二郎应助kk采纳,获得10
12秒前
轻松水蓝完成签到,获得积分10
15秒前
15秒前
15秒前
优秀的盼夏完成签到,获得积分10
16秒前
18秒前
18秒前
18秒前
深情安青应助徐榕采纳,获得10
19秒前
19秒前
夏天就应该爬树完成签到,获得积分10
19秒前
19秒前
可耐的听枫完成签到,获得积分10
21秒前
叶协琪完成签到,获得积分10
23秒前
Akim应助早期早睡采纳,获得10
23秒前
23秒前
黑球发布了新的文献求助10
24秒前
赘婿应助Lizhiiiy采纳,获得10
25秒前
wst发布了新的文献求助10
25秒前
wang5945发布了新的文献求助10
26秒前
叶协琪发布了新的文献求助10
26秒前
27秒前
木木三发布了新的文献求助20
27秒前
嘴嘴是大嘴007完成签到,获得积分10
27秒前
酷炫依白发布了新的文献求助10
28秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055972
求助须知:如何正确求助?哪些是违规求助? 2712555
关于积分的说明 7432225
捐赠科研通 2357553
什么是DOI,文献DOI怎么找? 1248929
科研通“疑难数据库(出版商)”最低求助积分说明 606823
版权声明 596195