已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluating the generalization ability of deep learning models: An application on sugar content estimation from hyperspectral images of wine grape berries

高光谱成像 葡萄酒 人工智能 一般化 计算机科学 内容(测量理论) 估计 葡萄酒 模式识别(心理学) 计算机视觉 机器学习 食品科学 数学 化学 数学分析 管理 经济
作者
Rui Silva,O. Freitas,Pedro Melo‐Pinto
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:250: 123891-123891 被引量:2
标识
DOI:10.1016/j.eswa.2024.123891
摘要

The assessment of grape ripeness is an extremely important factor in winemaking and has a direct impact on wine quality. This process is usually carried out with a traditional laboratory analysis, a costly procedure that destroys the grapes selected for analysis. Consequently, the research in precision viticulture has shifted focus to the development of digital processes that are fast and non-intrusive. In this context, the use of hyperspectral imaging paired with prediction models for the estimation of oenological parameters has gained wide recognition. The major drawback of these solutions is the extreme variability presented by the data, aligned with a small number of samples for training, derived from the high cost of acquiring new samples infield. Achieving a satisfactory generalization capacity while working on small data sets with such high variability is a serious challenge, and in this work we aim to provide a pipeline on how to properly build validation and test sets that allow for a correct evaluation of performance, avoiding common misconceptions such as using the R2 metric for model selection or creating models based on biased data sets. Additionally, we implement and evaluate different architectures, namely Residual Networks, InceptionTime and MiniRocket, to showcase that deep learning techniques can accurately predict sugar content from different vintages and varieties of wine grape berries, maintaining a strong generalization capacity even in a setting of high variability and small number of samples. Finally, our results also suggest that adding more relevant features to better characterize the data might be enough for the networks to adjust and produce accurate estimates of sugar content, which would eliminate the necessity to capture new samples on a yearly basis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小杰发布了新的文献求助10
4秒前
王加冕完成签到 ,获得积分20
4秒前
小鲨鱼完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
wanci应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得30
7秒前
Orange应助科研通管家采纳,获得10
7秒前
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
11秒前
12秒前
12秒前
小杰完成签到,获得积分10
17秒前
17秒前
田茂青完成签到,获得积分10
19秒前
黄少侠完成签到 ,获得积分10
23秒前
茶色小鸡完成签到,获得积分10
25秒前
标致的山水完成签到 ,获得积分10
25秒前
MG发布了新的文献求助10
27秒前
小瓦片完成签到,获得积分10
27秒前
李兴完成签到 ,获得积分10
28秒前
30秒前
天才罗完成签到 ,获得积分10
31秒前
31秒前
Ava应助11采纳,获得10
32秒前
温温发布了新的文献求助10
35秒前
研友_8DAv0L发布了新的文献求助10
35秒前
40秒前
40秒前
李爱国应助研友_8DAv0L采纳,获得10
40秒前
情怀应助coco采纳,获得10
42秒前
豆豆发布了新的文献求助10
42秒前
舒展完成签到,获得积分10
45秒前
11发布了新的文献求助10
45秒前
丘比特应助Lobachevsky采纳,获得10
48秒前
49秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142320
求助须知:如何正确求助?哪些是违规求助? 2793260
关于积分的说明 7806108
捐赠科研通 2449516
什么是DOI,文献DOI怎么找? 1303345
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300