工作流程
计算机科学
原始数据
数据处理
钥匙(锁)
任务(项目管理)
特征工程
数据收集
大数据
德沃普斯
人工智能
数据科学
软件工程
深度学习
数据挖掘
系统工程
数据库
工程类
软件部署
计算机安全
程序设计语言
统计
数学
出处
期刊:Elsevier eBooks
[Elsevier]
日期:2023-01-01
卷期号:: 321-338
被引量:4
标识
DOI:10.1016/b978-0-32-391919-7.00022-6
摘要
Data collection, wrangling, and pre-processing are critical steps within any AI/ML model development lifecycle. These steps precede every model building activity culminating in feature engineering for model formation. This chapter emphasizes the design, development, and implementation of raw data transformation into features in support of AI/ML model development. Integration and preparation of data sets from various sources, such as files, databases, big data storage, sensors or social networks is a key task when you want to build an appropriate analytic model using machine learning or deep learning techniques. Critical to the model building endeavor is the need to have high-quality data that, unfortunately, has shown to take up 50 to 80 percent of the time for an AI/ML development project. This chapter presents ways to reduce this processing time using data-driven operations "DataOps" (i.e., DevOps for data processing and workflows) pipelines for AI/ML.
科研通智能强力驱动
Strongly Powered by AbleSci AI