导线
地形
计算机科学
人工智能
机器人
先验概率
运动(物理)
一般化
计算机视觉
贝叶斯概率
数学
地质学
地理
地图学
大地测量学
数学分析
作者
Jinze Wu,Guiyang Xin,Chenkun Qi,Yufei Xue
出处
期刊:IEEE robotics and automation letters
日期:2023-06-28
卷期号:8 (8): 4975-4982
被引量:16
标识
DOI:10.1109/lra.2023.3290509
摘要
Developing both robust and agile locomotion skills for legged robots is non-trivial. In this work, we present the first blind locomotion system capable of traversing challenging terrains robustly while moving rapidly over natural terrains. Our approach incorporates the Adversarial Motion Priors (AMP) in locomotion policy training and demonstrates zero-shot generalization from the motion dataset on flat terrains to challenging terrains in the real world. We show this result on a quadruped robot Go1 using only proprioceptive sensors consisting of the IMU and joint encoders. Experiments on the Go1 demonstrate the robust and natural motion generated by the proposed method for traversing challenging terrains while moving rapidly over natural terrains.
科研通智能强力驱动
Strongly Powered by AbleSci AI