Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction

计算机科学 判别式 推论 机器学习 人工智能 过程(计算) 数据挖掘 核(代数) 一般化 领域(数学分析) 特征(语言学) 任务(项目管理) 领域知识 工程类 组合数学 数学分析 哲学 操作系统 语言学 系统工程 数学
作者
Jing Yang,Xiaomin Wang
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:244: 109928-109928 被引量:10
标识
DOI:10.1016/j.ress.2024.109928
摘要

Reliable prediction of the remaining useful life (RUL) is important for improving maintenance efficiency, equipment availability, and avoiding catastrophic accidents in complex industrial systems. Existing RUL prediction models have made some contribution, relying mainly on a large amount of degraded data with similar patterns or approximate distributions. However, in practical industrial systems, only a small amount of labeling data is usually available, which may also come from different devices and different working conditions, resulting in different distributions in the degraded data. This situation makes the existing RUL methods difficult to achieve satisfactory generalization performance. To address this challenge, this paper proposes a novel Meta-Learning with Deep Flow Kernel Network (MetaDFKN) model for RUL prediction under the few shot and cross-domain conditions. The model first learns kernel features in a data-driven manner and considers them as latent variables to improve the model's representative ability of shared knowledge between tasks. Then, we introduce the conditional normalized flow technique to infer richer posterior distributions in the kernel features, which helps to obtain feature information with stronger discriminative power. Moreover, shared knowledge and task-specific information are integrated into the contextual inference process, which can mine the dependencies of related tasks and capture richer domain information. Finally, to evaluate the proposed model, we conduct extensive experiments on engine and bearings degradation data, and the results verify the superiority of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cetomacrogol完成签到,获得积分10
2秒前
2秒前
Hello应助菜头采纳,获得10
3秒前
善学以致用应助欢呼的井采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
流光广陵应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得30
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
SIDEsss应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
SIDEsss应助科研通管家采纳,获得10
6秒前
6秒前
火星人发布了新的文献求助10
6秒前
luxkex完成签到,获得积分10
6秒前
6秒前
范东乐发布了新的文献求助10
6秒前
希望天下0贩的0应助Swallow采纳,获得10
6秒前
qinqiny完成签到 ,获得积分10
6秒前
Xiaoxin_Ju完成签到,获得积分10
7秒前
kp完成签到,获得积分10
7秒前
Jasper应助曲书文采纳,获得10
7秒前
hhj02发布了新的文献求助10
7秒前
李爱国应助高高的魔镜采纳,获得10
8秒前
bobo完成签到,获得积分10
8秒前
Orange应助reap采纳,获得10
8秒前
9秒前
9秒前
科研小崩豆完成签到,获得积分10
9秒前
友好盼波完成签到,获得积分10
9秒前
dimples完成签到 ,获得积分10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773842
求助须知:如何正确求助?哪些是违规求助? 3319455
关于积分的说明 10195161
捐赠科研通 3034050
什么是DOI,文献DOI怎么找? 1664925
邀请新用户注册赠送积分活动 796399
科研通“疑难数据库(出版商)”最低求助积分说明 757443