VetLLM: Large Language Model for Predicting Diagnosis from Veterinary Notes

计算机科学 自然语言处理 人工智能
作者
Yixing Jiang,Jeremy Irvin,Andrew Y. Ng,James Zou
标识
DOI:10.1142/9789811286421_0010
摘要

Biocomputing 2024, pp. 120-133 (2023) Open AccessVetLLM: Large Language Model for Predicting Diagnosis from Veterinary NotesYixing Jiang, Jeremy A. Irvin, Andrew Y. Ng, and James ZouYixing JiangStanford University, Stanford, CA, United States, Jeremy A. IrvinStanford University, Stanford, CA, United States, Andrew Y. NgStanford University, Stanford, CA, United States, and James ZouStanford University, Stanford, CA, United Stateshttps://doi.org/10.1142/9789811286421_0010Cited by:0 (Source: Crossref) PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail Abstract: Lack of diagnosis coding is a barrier to leveraging veterinary notes for medical and public health research. Previous work is limited to develop specialized rule-based or customized supervised learning models to predict diagnosis coding, which is tedious and not easily transferable. In this work, we show that open-source large language models (LLMs) pretrained on general corpus can achieve reasonable performance in a zero-shot setting. Alpaca-7B can achieve a zero-shot F1 of 0.538 on CSU test data and 0.389 on PP test data, two standard benchmarks for coding from veterinary notes. Furthermore, with appropriate fine-tuning, the performance of LLMs can be substantially boosted, exceeding those of strong state-of-the-art supervised models. VetLLM, which is fine-tuned on Alpaca-7B using just 5000 veterinary notes, can achieve a F1 of 0.747 on CSU test data and 0.637 on PP test data. It is of note that our fine-tuning is data-efficient: using 200 notes can outperform supervised models trained with more than 100,000 notes. The findings demonstrate the great potential of leveraging LLMs for language processing tasks in medicine, and we advocate this new paradigm for processing clinical text. Keywords: Diagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation Models FiguresReferencesRelatedDetails Recommended Biocomputing 2024Metrics History Information© The AuthorsOpen Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.KeywordsDiagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation ModelsPDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助chengshaoyan采纳,获得10
刚刚
夕荀发布了新的文献求助10
1秒前
彭日晓发布了新的文献求助10
1秒前
爆辣跳跳糖关注了科研通微信公众号
1秒前
大笨蛋发布了新的文献求助10
1秒前
world完成签到,获得积分10
1秒前
英姑应助孤独丹珍采纳,获得10
2秒前
daisies应助zxq采纳,获得20
2秒前
2秒前
怪胎完成签到,获得积分10
2秒前
领导范儿应助风中谷南采纳,获得10
2秒前
小熵完成签到,获得积分10
3秒前
3秒前
jiaminzhao发布了新的文献求助10
4秒前
4秒前
传奇3应助lixxx采纳,获得10
5秒前
鸣笛应助左丘以云采纳,获得20
6秒前
6秒前
完美春天发布了新的文献求助10
7秒前
7秒前
小花妹妹发布了新的文献求助10
7秒前
sanages发布了新的文献求助10
8秒前
8秒前
My完成签到,获得积分10
9秒前
郦稀完成签到,获得积分10
9秒前
鸭梨发布了新的文献求助10
9秒前
其11发布了新的文献求助10
10秒前
在捂汗发布了新的文献求助10
11秒前
大笨蛋完成签到,获得积分20
11秒前
11秒前
11秒前
12秒前
12秒前
青蛙十字绣00700完成签到,获得积分10
12秒前
Jasper应助执着过客采纳,获得10
13秒前
sanages完成签到,获得积分10
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
帅气抽屉完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577232
求助须知:如何正确求助?哪些是违规求助? 3996368
关于积分的说明 12372376
捐赠科研通 3670475
什么是DOI,文献DOI怎么找? 2022811
邀请新用户注册赠送积分活动 1056944
科研通“疑难数据库(出版商)”最低求助积分说明 944026