VetLLM: Large Language Model for Predicting Diagnosis from Veterinary Notes

计算机科学 自然语言处理 人工智能
作者
Yixing Jiang,Jeremy Irvin,Andrew Y. Ng,James Zou
标识
DOI:10.1142/9789811286421_0010
摘要

Biocomputing 2024, pp. 120-133 (2023) Open AccessVetLLM: Large Language Model for Predicting Diagnosis from Veterinary NotesYixing Jiang, Jeremy A. Irvin, Andrew Y. Ng, and James ZouYixing JiangStanford University, Stanford, CA, United States, Jeremy A. IrvinStanford University, Stanford, CA, United States, Andrew Y. NgStanford University, Stanford, CA, United States, and James ZouStanford University, Stanford, CA, United Stateshttps://doi.org/10.1142/9789811286421_0010Cited by:0 (Source: Crossref) PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail Abstract: Lack of diagnosis coding is a barrier to leveraging veterinary notes for medical and public health research. Previous work is limited to develop specialized rule-based or customized supervised learning models to predict diagnosis coding, which is tedious and not easily transferable. In this work, we show that open-source large language models (LLMs) pretrained on general corpus can achieve reasonable performance in a zero-shot setting. Alpaca-7B can achieve a zero-shot F1 of 0.538 on CSU test data and 0.389 on PP test data, two standard benchmarks for coding from veterinary notes. Furthermore, with appropriate fine-tuning, the performance of LLMs can be substantially boosted, exceeding those of strong state-of-the-art supervised models. VetLLM, which is fine-tuned on Alpaca-7B using just 5000 veterinary notes, can achieve a F1 of 0.747 on CSU test data and 0.637 on PP test data. It is of note that our fine-tuning is data-efficient: using 200 notes can outperform supervised models trained with more than 100,000 notes. The findings demonstrate the great potential of leveraging LLMs for language processing tasks in medicine, and we advocate this new paradigm for processing clinical text. Keywords: Diagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation Models FiguresReferencesRelatedDetails Recommended Biocomputing 2024Metrics History Information© The AuthorsOpen Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.KeywordsDiagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation ModelsPDF download

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱笑舞蹈完成签到,获得积分10
1秒前
爆米花应助幽默的依瑶采纳,获得10
1秒前
hyd1640完成签到,获得积分10
2秒前
信号灯发布了新的文献求助10
2秒前
2秒前
明理以南完成签到,获得积分10
3秒前
称心雁凡完成签到,获得积分10
3秒前
李沐阳完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
小马甲应助Lilac采纳,获得10
5秒前
六尺巷发布了新的文献求助10
6秒前
考拉发布了新的文献求助10
6秒前
NexusExplorer应助专一的饼干采纳,获得10
6秒前
6秒前
奥特斌完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
清辉月凝发布了新的文献求助10
8秒前
单薄茗发布了新的文献求助10
8秒前
8秒前
jiannanwu完成签到,获得积分10
9秒前
结实的白羊完成签到,获得积分10
9秒前
10秒前
汉堡包应助奥特斌采纳,获得10
10秒前
11秒前
酷炫的__完成签到,获得积分10
11秒前
ht完成签到,获得积分10
11秒前
英勇的安柏完成签到,获得积分10
11秒前
121212发布了新的文献求助10
11秒前
是个宝耶完成签到 ,获得积分10
11秒前
zzy发布了新的文献求助10
11秒前
中和皇极完成签到,获得积分0
11秒前
草莓奶冻发布了新的文献求助10
12秒前
12秒前
小何完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636950
求助须知:如何正确求助?哪些是违规求助? 4742342
关于积分的说明 14997109
捐赠科研通 4795139
什么是DOI,文献DOI怎么找? 2561855
邀请新用户注册赠送积分活动 1521357
关于科研通互助平台的介绍 1481458