VetLLM: Large Language Model for Predicting Diagnosis from Veterinary Notes

计算机科学 自然语言处理 人工智能
作者
Yixing Jiang,Jeremy Irvin,Andrew Y. Ng,James Zou
标识
DOI:10.1142/9789811286421_0010
摘要

Biocomputing 2024, pp. 120-133 (2023) Open AccessVetLLM: Large Language Model for Predicting Diagnosis from Veterinary NotesYixing Jiang, Jeremy A. Irvin, Andrew Y. Ng, and James ZouYixing JiangStanford University, Stanford, CA, United States, Jeremy A. IrvinStanford University, Stanford, CA, United States, Andrew Y. NgStanford University, Stanford, CA, United States, and James ZouStanford University, Stanford, CA, United Stateshttps://doi.org/10.1142/9789811286421_0010Cited by:0 (Source: Crossref) PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail Abstract: Lack of diagnosis coding is a barrier to leveraging veterinary notes for medical and public health research. Previous work is limited to develop specialized rule-based or customized supervised learning models to predict diagnosis coding, which is tedious and not easily transferable. In this work, we show that open-source large language models (LLMs) pretrained on general corpus can achieve reasonable performance in a zero-shot setting. Alpaca-7B can achieve a zero-shot F1 of 0.538 on CSU test data and 0.389 on PP test data, two standard benchmarks for coding from veterinary notes. Furthermore, with appropriate fine-tuning, the performance of LLMs can be substantially boosted, exceeding those of strong state-of-the-art supervised models. VetLLM, which is fine-tuned on Alpaca-7B using just 5000 veterinary notes, can achieve a F1 of 0.747 on CSU test data and 0.637 on PP test data. It is of note that our fine-tuning is data-efficient: using 200 notes can outperform supervised models trained with more than 100,000 notes. The findings demonstrate the great potential of leveraging LLMs for language processing tasks in medicine, and we advocate this new paradigm for processing clinical text. Keywords: Diagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation Models FiguresReferencesRelatedDetails Recommended Biocomputing 2024Metrics History Information© The AuthorsOpen Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.KeywordsDiagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation ModelsPDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王一正完成签到,获得积分10
3秒前
4秒前
王小雨完成签到 ,获得积分10
4秒前
huangyikun完成签到,获得积分10
4秒前
5秒前
7秒前
7秒前
和谐的敏完成签到,获得积分10
8秒前
8秒前
赵梦妍发布了新的文献求助10
9秒前
善学以致用应助低空飞行采纳,获得10
9秒前
zzzxiangyi完成签到,获得积分10
10秒前
LiYanqin完成签到,获得积分10
10秒前
俏皮的听云完成签到,获得积分10
10秒前
NLNL完成签到,获得积分20
10秒前
xt完成签到,获得积分10
11秒前
11秒前
勇敢的心发布了新的文献求助10
11秒前
11秒前
11秒前
shasha完成签到,获得积分10
11秒前
魅域苍穹发布了新的文献求助10
11秒前
linjiaxin发布了新的文献求助10
11秒前
赵祎完成签到,获得积分10
13秒前
经小夏发布了新的文献求助10
14秒前
14秒前
15秒前
lll完成签到,获得积分10
15秒前
善学以致用应助王阳洋采纳,获得10
15秒前
15秒前
胡涵暄发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
斐然诗完成签到,获得积分10
17秒前
morning完成签到,获得积分10
19秒前
ykq发布了新的文献求助10
20秒前
赵梦妍完成签到,获得积分10
20秒前
kaia发布了新的文献求助10
20秒前
勇敢的心完成签到,获得积分10
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930