已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

VetLLM: Large Language Model for Predicting Diagnosis from Veterinary Notes

计算机科学 自然语言处理 人工智能
作者
Yixing Jiang,Jeremy Irvin,Andrew Y. Ng,James Zou
标识
DOI:10.1142/9789811286421_0010
摘要

Biocomputing 2024, pp. 120-133 (2023) Open AccessVetLLM: Large Language Model for Predicting Diagnosis from Veterinary NotesYixing Jiang, Jeremy A. Irvin, Andrew Y. Ng, and James ZouYixing JiangStanford University, Stanford, CA, United States, Jeremy A. IrvinStanford University, Stanford, CA, United States, Andrew Y. NgStanford University, Stanford, CA, United States, and James ZouStanford University, Stanford, CA, United Stateshttps://doi.org/10.1142/9789811286421_0010Cited by:0 (Source: Crossref) PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail Abstract: Lack of diagnosis coding is a barrier to leveraging veterinary notes for medical and public health research. Previous work is limited to develop specialized rule-based or customized supervised learning models to predict diagnosis coding, which is tedious and not easily transferable. In this work, we show that open-source large language models (LLMs) pretrained on general corpus can achieve reasonable performance in a zero-shot setting. Alpaca-7B can achieve a zero-shot F1 of 0.538 on CSU test data and 0.389 on PP test data, two standard benchmarks for coding from veterinary notes. Furthermore, with appropriate fine-tuning, the performance of LLMs can be substantially boosted, exceeding those of strong state-of-the-art supervised models. VetLLM, which is fine-tuned on Alpaca-7B using just 5000 veterinary notes, can achieve a F1 of 0.747 on CSU test data and 0.637 on PP test data. It is of note that our fine-tuning is data-efficient: using 200 notes can outperform supervised models trained with more than 100,000 notes. The findings demonstrate the great potential of leveraging LLMs for language processing tasks in medicine, and we advocate this new paradigm for processing clinical text. Keywords: Diagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation Models FiguresReferencesRelatedDetails Recommended Biocomputing 2024Metrics History Information© The AuthorsOpen Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.KeywordsDiagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation ModelsPDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助hyhyhyhy采纳,获得10
刚刚
独特的初彤完成签到 ,获得积分10
刚刚
1秒前
GSH完成签到,获得积分20
2秒前
周杰完成签到,获得积分10
2秒前
3秒前
敬业乐群完成签到,获得积分10
4秒前
绿柏发布了新的文献求助10
6秒前
7秒前
土土不土发布了新的文献求助10
7秒前
8R60d8应助GSH采纳,获得40
8秒前
若水发布了新的文献求助10
8秒前
SUNNYONE完成签到 ,获得积分10
9秒前
Owen应助多情浩轩采纳,获得10
9秒前
源孤律醒完成签到 ,获得积分10
11秒前
忍蛙发布了新的文献求助10
12秒前
15秒前
活泼的机器猫完成签到 ,获得积分10
17秒前
天天快乐应助激昂的逊采纳,获得10
20秒前
22秒前
若水完成签到,获得积分10
22秒前
绿柏完成签到,获得积分10
25秒前
养乐多敬你完成签到 ,获得积分10
27秒前
28秒前
28秒前
Ava应助绿柏采纳,获得10
29秒前
29秒前
hyhyhyhy发布了新的文献求助10
32秒前
子凡完成签到 ,获得积分10
33秒前
激昂的逊发布了新的文献求助10
33秒前
CC完成签到 ,获得积分10
34秒前
史超完成签到,获得积分10
34秒前
37秒前
树妖三三完成签到,获得积分10
39秒前
39秒前
多情的如冰完成签到 ,获得积分10
39秒前
peeer完成签到,获得积分10
39秒前
林利芳完成签到 ,获得积分0
40秒前
学不完了完成签到 ,获得积分10
40秒前
李剑鸿完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469843
求助须知:如何正确求助?哪些是违规求助? 4572859
关于积分的说明 14337388
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465253
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259