VetLLM: Large Language Model for Predicting Diagnosis from Veterinary Notes

计算机科学 自然语言处理 人工智能
作者
Yixing Jiang,Jeremy Irvin,Andrew Y. Ng,James Zou
标识
DOI:10.1142/9789811286421_0010
摘要

Biocomputing 2024, pp. 120-133 (2023) Open AccessVetLLM: Large Language Model for Predicting Diagnosis from Veterinary NotesYixing Jiang, Jeremy A. Irvin, Andrew Y. Ng, and James ZouYixing JiangStanford University, Stanford, CA, United States, Jeremy A. IrvinStanford University, Stanford, CA, United States, Andrew Y. NgStanford University, Stanford, CA, United States, and James ZouStanford University, Stanford, CA, United Stateshttps://doi.org/10.1142/9789811286421_0010Cited by:0 (Source: Crossref) PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail Abstract: Lack of diagnosis coding is a barrier to leveraging veterinary notes for medical and public health research. Previous work is limited to develop specialized rule-based or customized supervised learning models to predict diagnosis coding, which is tedious and not easily transferable. In this work, we show that open-source large language models (LLMs) pretrained on general corpus can achieve reasonable performance in a zero-shot setting. Alpaca-7B can achieve a zero-shot F1 of 0.538 on CSU test data and 0.389 on PP test data, two standard benchmarks for coding from veterinary notes. Furthermore, with appropriate fine-tuning, the performance of LLMs can be substantially boosted, exceeding those of strong state-of-the-art supervised models. VetLLM, which is fine-tuned on Alpaca-7B using just 5000 veterinary notes, can achieve a F1 of 0.747 on CSU test data and 0.637 on PP test data. It is of note that our fine-tuning is data-efficient: using 200 notes can outperform supervised models trained with more than 100,000 notes. The findings demonstrate the great potential of leveraging LLMs for language processing tasks in medicine, and we advocate this new paradigm for processing clinical text. Keywords: Diagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation Models FiguresReferencesRelatedDetails Recommended Biocomputing 2024Metrics History Information© The AuthorsOpen Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.KeywordsDiagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation ModelsPDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
南星发布了新的文献求助10
2秒前
3秒前
细心蛋挞发布了新的文献求助10
4秒前
天真的羊青完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
黄量杰成完成签到,获得积分10
7秒前
百里太清完成签到,获得积分10
8秒前
星辰大海应助健忘症采纳,获得10
8秒前
这知识它不进脑汁啊完成签到,获得积分10
8秒前
11112321321发布了新的文献求助10
9秒前
困敦发布了新的文献求助10
10秒前
zhangyu哥完成签到,获得积分10
10秒前
科研狗发布了新的文献求助10
11秒前
去向未来发布了新的文献求助10
12秒前
Yxk完成签到 ,获得积分10
12秒前
13秒前
77完成签到,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
Akim应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
wheat发布了新的文献求助10
14秒前
传奇3应助任性的棒棒糖采纳,获得10
15秒前
梦里江南完成签到,获得积分10
15秒前
16秒前
臆想完成签到 ,获得积分10
16秒前
16秒前
hx关闭了hx文献求助
17秒前
18秒前
mz发布了新的文献求助10
18秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384713
求助须知:如何正确求助?哪些是违规求助? 4507566
关于积分的说明 14028354
捐赠科研通 4417204
什么是DOI,文献DOI怎么找? 2426357
邀请新用户注册赠送积分活动 1419123
关于科研通互助平台的介绍 1397426