已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

VetLLM: Large Language Model for Predicting Diagnosis from Veterinary Notes

计算机科学 自然语言处理 人工智能
作者
Yixing Jiang,Jeremy Irvin,Andrew Y. Ng,James Zou
标识
DOI:10.1142/9789811286421_0010
摘要

Biocomputing 2024, pp. 120-133 (2023) Open AccessVetLLM: Large Language Model for Predicting Diagnosis from Veterinary NotesYixing Jiang, Jeremy A. Irvin, Andrew Y. Ng, and James ZouYixing JiangStanford University, Stanford, CA, United States, Jeremy A. IrvinStanford University, Stanford, CA, United States, Andrew Y. NgStanford University, Stanford, CA, United States, and James ZouStanford University, Stanford, CA, United Stateshttps://doi.org/10.1142/9789811286421_0010Cited by:0 (Source: Crossref) PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail Abstract: Lack of diagnosis coding is a barrier to leveraging veterinary notes for medical and public health research. Previous work is limited to develop specialized rule-based or customized supervised learning models to predict diagnosis coding, which is tedious and not easily transferable. In this work, we show that open-source large language models (LLMs) pretrained on general corpus can achieve reasonable performance in a zero-shot setting. Alpaca-7B can achieve a zero-shot F1 of 0.538 on CSU test data and 0.389 on PP test data, two standard benchmarks for coding from veterinary notes. Furthermore, with appropriate fine-tuning, the performance of LLMs can be substantially boosted, exceeding those of strong state-of-the-art supervised models. VetLLM, which is fine-tuned on Alpaca-7B using just 5000 veterinary notes, can achieve a F1 of 0.747 on CSU test data and 0.637 on PP test data. It is of note that our fine-tuning is data-efficient: using 200 notes can outperform supervised models trained with more than 100,000 notes. The findings demonstrate the great potential of leveraging LLMs for language processing tasks in medicine, and we advocate this new paradigm for processing clinical text. Keywords: Diagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation Models FiguresReferencesRelatedDetails Recommended Biocomputing 2024Metrics History Information© The AuthorsOpen Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.KeywordsDiagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation ModelsPDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lovelife完成签到,获得积分10
1秒前
wlxs发布了新的文献求助10
1秒前
自然的梦松完成签到,获得积分20
1秒前
Smiling完成签到 ,获得积分10
2秒前
吴彦祖的通通完成签到 ,获得积分10
3秒前
zzzy完成签到 ,获得积分10
4秒前
xianyaoz完成签到 ,获得积分0
4秒前
CAOHOU应助自然的梦松采纳,获得10
6秒前
年少丶完成签到,获得积分10
8秒前
研友_ngX12Z完成签到 ,获得积分10
10秒前
13秒前
香蕉觅云应助Doctor采纳,获得10
14秒前
zzz完成签到,获得积分20
15秒前
15秒前
zzz发布了新的文献求助10
19秒前
ROMANTIC完成签到 ,获得积分10
20秒前
lxw完成签到,获得积分10
21秒前
稀饭发布了新的文献求助10
21秒前
lxw发布了新的文献求助10
26秒前
寒冷的帆布鞋完成签到,获得积分10
27秒前
28秒前
明昼发布了新的文献求助10
29秒前
31秒前
YDX发布了新的文献求助10
33秒前
wanci应助稀饭采纳,获得10
34秒前
安然完成签到 ,获得积分10
35秒前
盛事不朽完成签到 ,获得积分10
35秒前
PAIDAXXXX完成签到,获得积分10
36秒前
JAJ完成签到 ,获得积分10
37秒前
John完成签到 ,获得积分10
37秒前
Judy完成签到 ,获得积分10
38秒前
42秒前
ppg123应助科研通管家采纳,获得10
42秒前
ppg123应助科研通管家采纳,获得10
42秒前
ppg123应助科研通管家采纳,获得10
42秒前
ppg123应助科研通管家采纳,获得10
42秒前
yx_cheng应助科研通管家采纳,获得30
42秒前
香蕉觅云应助科研通管家采纳,获得10
42秒前
Profeto应助科研通管家采纳,获得10
42秒前
Akim应助科研通管家采纳,获得10
42秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994866
求助须知:如何正确求助?哪些是违规求助? 3534988
关于积分的说明 11266966
捐赠科研通 3274824
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809762