已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

VetLLM: Large Language Model for Predicting Diagnosis from Veterinary Notes

计算机科学 自然语言处理 人工智能
作者
Yixing Jiang,Jeremy Irvin,Andrew Y. Ng,James Zou
标识
DOI:10.1142/9789811286421_0010
摘要

Biocomputing 2024, pp. 120-133 (2023) Open AccessVetLLM: Large Language Model for Predicting Diagnosis from Veterinary NotesYixing Jiang, Jeremy A. Irvin, Andrew Y. Ng, and James ZouYixing JiangStanford University, Stanford, CA, United States, Jeremy A. IrvinStanford University, Stanford, CA, United States, Andrew Y. NgStanford University, Stanford, CA, United States, and James ZouStanford University, Stanford, CA, United Stateshttps://doi.org/10.1142/9789811286421_0010Cited by:0 (Source: Crossref) PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail Abstract: Lack of diagnosis coding is a barrier to leveraging veterinary notes for medical and public health research. Previous work is limited to develop specialized rule-based or customized supervised learning models to predict diagnosis coding, which is tedious and not easily transferable. In this work, we show that open-source large language models (LLMs) pretrained on general corpus can achieve reasonable performance in a zero-shot setting. Alpaca-7B can achieve a zero-shot F1 of 0.538 on CSU test data and 0.389 on PP test data, two standard benchmarks for coding from veterinary notes. Furthermore, with appropriate fine-tuning, the performance of LLMs can be substantially boosted, exceeding those of strong state-of-the-art supervised models. VetLLM, which is fine-tuned on Alpaca-7B using just 5000 veterinary notes, can achieve a F1 of 0.747 on CSU test data and 0.637 on PP test data. It is of note that our fine-tuning is data-efficient: using 200 notes can outperform supervised models trained with more than 100,000 notes. The findings demonstrate the great potential of leveraging LLMs for language processing tasks in medicine, and we advocate this new paradigm for processing clinical text. Keywords: Diagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation Models FiguresReferencesRelatedDetails Recommended Biocomputing 2024Metrics History Information© The AuthorsOpen Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.KeywordsDiagnosis ExtractionVeterinary NotesVeterinary MedicineLarge Language ModelsLLMFoundation ModelsPDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶问夏完成签到,获得积分10
刚刚
cj发布了新的文献求助10
2秒前
丹丹完成签到,获得积分10
4秒前
4秒前
SYLH应助感动的三毒采纳,获得10
5秒前
zengzeng完成签到,获得积分10
6秒前
1234567xjy完成签到,获得积分10
6秒前
10秒前
15秒前
IlIIlIlIIIllI完成签到,获得积分10
16秒前
天天好心覃完成签到 ,获得积分10
16秒前
哈哈哈发布了新的文献求助10
16秒前
Anhe完成签到,获得积分20
17秒前
18秒前
19秒前
Jasper应助Anhe采纳,获得10
22秒前
22秒前
头号玩家发布了新的文献求助10
23秒前
棖0921发布了新的文献求助40
24秒前
小小团发布了新的文献求助10
24秒前
小马甲应助秋季采纳,获得10
25秒前
科研fw完成签到 ,获得积分10
27秒前
耍酷的仰发布了新的文献求助10
28秒前
32秒前
Suttier完成签到 ,获得积分20
32秒前
违规昵称21380192390完成签到,获得积分10
33秒前
38秒前
秋季发布了新的文献求助10
38秒前
逃离地球完成签到 ,获得积分10
39秒前
Owen应助serena1127采纳,获得10
39秒前
耍酷鼠标完成签到 ,获得积分0
40秒前
飞龙完成签到,获得积分20
45秒前
48秒前
天天快乐应助Ade阿德采纳,获得10
56秒前
Ania99完成签到 ,获得积分10
59秒前
龙骑士25完成签到 ,获得积分10
59秒前
Tingting完成签到 ,获得积分10
1分钟前
NexusExplorer应助伟航采纳,获得10
1分钟前
八方面完成签到 ,获得积分10
1分钟前
瞬间完成签到 ,获得积分10
1分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471334
求助须知:如何正确求助?哪些是违规求助? 3064327
关于积分的说明 9087981
捐赠科研通 2755035
什么是DOI,文献DOI怎么找? 1511731
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698423