Explainable artificial intelligence‐driven mask design for self‐supervised seismic denoising

经济地质学 地质学 人工智能 区域地质 计算机科学 降噪 环境地质学 末端学 地震学 模式识别(心理学) 构造学
作者
Claire Birnie,Matteo Ravasi
出处
期刊:Geophysical Prospecting [Wiley]
被引量:4
标识
DOI:10.1111/1365-2478.13480
摘要

Abstract The presence of coherent noise in seismic data leads to errors and uncertainties, and as such it is paramount to suppress noise as early and efficiently as possible. Self‐supervised denoising circumvents the common requirement of deep learning procedures of having noisy‐clean training pairs. However, self‐supervised coherent noise suppression methods require extensive knowledge of the noise statistics. We propose the use of explainable artificial intelligence approaches to ‘see inside the black box’ that is the denoising network and use the gained knowledge to replace the need for any prior knowledge of the noise itself. This is achieved in practice by leveraging bias‐free networks and the direct linear link between input and output provided by the associated Jacobian matrix; we show that a simple averaging of the Jacobian contributions over a number of randomly selected input pixels provides an indication of the most effective mask to suppress noise present in the data. The proposed method, therefore, becomes a fully automated denoising procedure requiring no clean training labels or prior knowledge. Realistic synthetic examples with noise signals of varying complexities, ranging from simple time‐correlated noise to complex pseudo‐rig noise propagating at the velocity of the ocean, are used to validate the proposed approach. Its automated nature is highlighted further by an application to two field data sets. Without any substantial pre‐processing or any knowledge of the acquisition environment, the automatically identified blind masks are shown to perform well in suppressing both trace‐wise noise in common shot gathers from the Volve marine data set and coloured noise in post‐stack seismic images from a land seismic survey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研柠檬精酸酸采纳,获得10
刚刚
科研通AI5应助刘清河采纳,获得10
2秒前
情怀应助Nana采纳,获得10
3秒前
李某完成签到 ,获得积分10
4秒前
绿柏完成签到 ,获得积分10
4秒前
强健的妙菱完成签到,获得积分10
5秒前
爱科研爱生活完成签到,获得积分10
5秒前
温柔大猩猩完成签到,获得积分10
5秒前
汉堡包应助丰富赛凤采纳,获得10
7秒前
干净的人达完成签到 ,获得积分10
8秒前
SciGPT应助Liolsy采纳,获得10
9秒前
阮绝悟发布了新的文献求助20
9秒前
10秒前
10秒前
HDrinnk发布了新的文献求助10
12秒前
Nana完成签到,获得积分10
12秒前
slycmd完成签到,获得积分10
12秒前
14秒前
14秒前
15秒前
15秒前
16秒前
清浅发布了新的文献求助10
17秒前
Metrix应助yzqsuper采纳,获得10
17秒前
17秒前
欧维完成签到,获得积分10
17秒前
perovskite发布了新的文献求助10
17秒前
18秒前
19秒前
meo应助QiongYin_123采纳,获得10
19秒前
20秒前
peekaboo发布了新的文献求助10
21秒前
Ali完成签到,获得积分10
22秒前
23秒前
黄小翰发布了新的文献求助50
23秒前
SYLH应助非常甜的菜头采纳,获得10
24秒前
顶刊我来了完成签到,获得积分10
24秒前
呀呀呀呀完成签到,获得积分10
25秒前
阮绝悟完成签到,获得积分10
26秒前
完美世界应助Laus采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512265
求助须知:如何正确求助?哪些是违规求助? 3094716
关于积分的说明 9224334
捐赠科研通 2789516
什么是DOI,文献DOI怎么找? 1530724
邀请新用户注册赠送积分活动 711092
科研通“疑难数据库(出版商)”最低求助积分说明 706551