Predictive modeling of neuroticism in depressed and non-depressed cohorts using voice features

神经质 心理学 临床心理学 人口 精神病理学 相关性 人工智能 听力学 人格 计算机科学 医学 数学 社会心理学 几何学 环境卫生
作者
Qian Luo,Yazheng Di,Tingshao Zhu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:352: 395-402
标识
DOI:10.1016/j.jad.2024.02.021
摘要

Neuroticism's impact on psychopathological and physical health issues has significant public health implications. Multiple studies confirm its predictive effect on suicide risk among depressed patients. However, previous research lacks a standardized criterion for assessing neuroticism through speech, often relying on simple features (such as pitch, loudness and MFCCs). This study aims to improve upon this by extracting features using advanced pre-trained speaker embedding models (i-vector and x-vector extractors). Additionally, unlike prior studies utilizing general population data, we explore neuroticism prediction in depressed and non-depressed subgroups. We collected edited discourse data from clinical interviews of 3580 depressed individuals and 4016 healthy individuals from the CONVERGE study. Instead of solely extracting Low-Level Acoustic Descriptors, we incorporated i-vector and x-vector features. We compared the performance of three different features in predicting neuroticism and explored their combination to enhance model accuracy. The SVR model, combining three speech features with downscaled features to 300, exhibited the highest performance in predicting neuroticism scores. It achieved a coefficient of determination (R-squared) of 0.3 or higher and a correlation of 0.56 between predicted and actual values. The predictive classification accuracy of speech features for neuroticism in specific populations (healthy and depressed) exceeded 60 %. This study included only women. Combining diverse speech features enhances the predictive capacity of models using speech features to assess neuroticism, particularly in specific populations. This study lays the foundation for future exploration of speech features in neuroticism prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻半雪完成签到,获得积分10
刚刚
丹丹发布了新的文献求助10
1秒前
2秒前
zhuiyu完成签到 ,获得积分10
3秒前
5秒前
RebeccaHe应助晓山青采纳,获得10
6秒前
葶ting完成签到 ,获得积分10
7秒前
熊熊面包应助李李采纳,获得10
7秒前
喜悦香薇完成签到,获得积分10
8秒前
9秒前
wufang发布了新的文献求助10
9秒前
9秒前
11秒前
安天祈关注了科研通微信公众号
12秒前
小蘑菇应助贪玩的老虎采纳,获得10
12秒前
黎黎发布了新的文献求助30
13秒前
16秒前
BKP发布了新的文献求助10
17秒前
18秒前
ding应助露露采纳,获得10
18秒前
18秒前
撒个人应助自觉的忆霜采纳,获得10
19秒前
可爱的函函应助wufang采纳,获得10
19秒前
无辜忆寒完成签到,获得积分10
21秒前
思婷老公发布了新的文献求助10
21秒前
23秒前
23秒前
24秒前
诸沧海发布了新的文献求助10
24秒前
不配.应助科研通管家采纳,获得20
28秒前
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
Rita发布了新的文献求助10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
Singularity应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
29秒前
受伤惋庭发布了新的文献求助10
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124648
求助须知:如何正确求助?哪些是违规求助? 2774953
关于积分的说明 7724821
捐赠科研通 2430484
什么是DOI,文献DOI怎么找? 1291144
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323