Glioma Tumor Grading Using Radiomics on Conventional MRI: A Comparative Study of WHO 2021 and WHO 2016 Classification of Central Nervous Tumors

无线电技术 胶质瘤 随机森林 接收机工作特性 医学 分级(工程) 人工智能 百分位 计算机科学 机器学习 数学 统计 工程类 土木工程 癌症研究
作者
Farzan Moodi,Fereshteh Khodadadi Shoushtari,Delaram J. Ghadimi,Gelareh Valizadeh,Ehsan Khormali,Hanieh Mobarak Salari,Mohammad Amin Dabbagh Ohadi,Yalda Nilipour,Amin Jahanbakhshi,Hamidreza Saligheh Rad
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (3): 923-938 被引量:2
标识
DOI:10.1002/jmri.29146
摘要

Background Glioma grading transformed in World Health Organization (WHO) 2021 CNS tumor classification, integrating molecular markers. However, the impact of this change on radiomics‐based machine learning (ML) classifiers remains unexplored. Purpose To assess the performance of ML in classifying glioma tumor grades based on various WHO criteria. Study Type Retrospective. Subjects A neuropathologist regraded gliomas of 237 patients into WHO 2016 and 2021 from 2007 criteria. Field Strength/Sequence Multicentric 0.5 to 3 Tesla; pre‐ and post‐contrast T1‐weighted, T2‐weighted, and fluid‐attenuated inversion recovery. Assessment Radiomic features were selected using random forest‐recursive feature elimination. The synthetic minority over‐sampling technique (SMOTE) was implemented for data augmentation. Stratified 10‐fold cross‐validation with and without SMOTE was used to evaluate 11 classifiers for 3‐grade (2, 3, and 4; WHO 2016 and 2021) and 2‐grade (low and high grade; WHO 2007 and 2021) classification. Additionally, we developed the models on data randomly divided into training and test sets (mixed‐data analysis), or data divided based on the centers (independent‐data analysis). Statistical Tests We assessed ML classifiers using sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (AUC). Top performances were compared with a t ‐test and categorical data with the chi‐square test using a significance level of P < 0.05. Results In the mixed‐data analysis, Stacking Classifier without SMOTE achieved the highest accuracy (0.86) and AUC (0.92) in 3‐grade WHO 2021 grouping. The results of WHO 2021 were significantly better than WHO 2016 ( P ‐value<0.0001). In the 2‐grade analysis, ML achieved 1.00 in all metrics. In the independent‐data analysis, ML classifiers showed strong discrimination between grade 2 and 4, despite lower performance metrics than the mixed analysis. Data Conclusion ML algorithms performed better in glioma tumor grading based on WHO 2021 criteria. Nonetheless, the clinical use of ML classifiers needs further investigation. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tysonqu完成签到,获得积分10
4秒前
4秒前
你大米哥完成签到 ,获得积分10
6秒前
故意的问安完成签到 ,获得积分10
7秒前
9秒前
贾方硕完成签到,获得积分10
9秒前
Lz555完成签到 ,获得积分10
9秒前
zoe完成签到,获得积分10
11秒前
皇甫契发布了新的文献求助10
16秒前
和平使命应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
hebhm完成签到,获得积分10
23秒前
欢呼的茗茗完成签到 ,获得积分10
24秒前
你说的完成签到 ,获得积分10
25秒前
tiger完成签到,获得积分10
26秒前
merrylake完成签到 ,获得积分10
26秒前
vikey完成签到 ,获得积分10
27秒前
tanliulong完成签到 ,获得积分10
28秒前
黄花完成签到 ,获得积分10
30秒前
标致的纸鹤完成签到 ,获得积分10
33秒前
橙子完成签到 ,获得积分10
34秒前
落叶完成签到 ,获得积分10
36秒前
卞卞完成签到,获得积分10
43秒前
爱听歌的青筠完成签到,获得积分10
44秒前
echo完成签到 ,获得积分10
45秒前
48秒前
PeterBeau完成签到 ,获得积分10
49秒前
Xiaojiu完成签到 ,获得积分10
51秒前
风信子发布了新的文献求助10
53秒前
轩少的完成签到 ,获得积分10
55秒前
56秒前
王磊完成签到 ,获得积分10
57秒前
PGS完成签到 ,获得积分10
1分钟前
文与武完成签到 ,获得积分10
1分钟前
荔枝波波加油完成签到 ,获得积分10
1分钟前
Ashley完成签到 ,获得积分10
1分钟前
DOUBLE完成签到,获得积分10
1分钟前
滴滴答答完成签到 ,获得积分10
1分钟前
追寻绮烟完成签到,获得积分10
1分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434856
求助须知:如何正确求助?哪些是违规求助? 3032180
关于积分的说明 8944456
捐赠科研通 2720147
什么是DOI,文献DOI怎么找? 1492192
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685862