材料科学
复合材料
绝热剪切带
分离式霍普金森压力棒
抗压强度
陶瓷基复合材料
有限元法
陶瓷
剪切(地质)
应变率
结构工程
工程类
作者
Yawei Zhang,Weikang liu,Zhiwei Gui,Zhou Shen-hua,Zhida Ren
标识
DOI:10.1016/j.ceramint.2022.11.083
摘要
Fiber-reinforced SiO2f/SiO2 woven ceramic matrix composites (CMCs) are widely applied in the aeronautics and astronautics field due to their many physical and chemical advantages. However, compressive impact loads affect many application scenarios; thus, the damage morphologies and failure modes of these composites under compressive impact should be studied, particularly in the through-thickness direction. In this study, a comparative analysis using the split Hopkinson pressure bar (SHPB) experiment and finite element analysis (FEA) model revealed the damage mechanisms. The compressive impact was simulated in Abaqus/Explicit, and the cohesive element was selected to simulate cohesion of the interface according to the Hashin criterion for multi-mode failure. The results show that 2.5-dimensional SiO2f/SiO2 woven CMCs do not have sufficient plasticity to restrain the propagation of micro-cracks under high strain rates after the elastic stage under compressive impact. Many micro-cracks propagated and formed large cracks in the adiabatic shear zone. The adiabatic shear zones were generated when a compressive impact load was applied to the SiO2f/SiO2 CMCs at a high strain rate, and these impacts deformed the SiO2f/SiO2 CMCs. The adiabatic shear zone occurred at a high strain rate at the weakest point inside the fields of the SiO2f/SiO2 CMCs. The micro-cracks propagated and accumulated in this zone. Plastic fracture is the major failure mode for the SiO2f/SiO2 CMC specimens; this failure was characterized by fiber yarn fracture and the formation of micro-voids and micro-cracks due to matrix fracture. The large cracks, new voids, and interfacial debonding lead to the failure of the SiO2f/SiO2 CMCs. Combined action due to micro-crack formation and its propagation in the adiabatic shear band leads to a softening mechanism of the strain rate.
科研通智能强力驱动
Strongly Powered by AbleSci AI