A data-driven improved genetic algorithm for agile earth observation satellite scheduling with time-dependent transition time

渡线 计算机科学 调度(生产过程) 人口 遗传算法 启发式 地球观测卫星 算法 数据挖掘 人工智能 数学优化 机器学习 卫星 工程类 数学 社会学 航空航天工程 人口学 操作系统
作者
Jian Wu,Bingyu Song,Guoting Zhang,Junwei Ou,Yuning Chen,Feng Yao,Lei He,Lining Xing
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:174: 108823-108823 被引量:12
标识
DOI:10.1016/j.cie.2022.108823
摘要

The agile earth observation satellite (AEOS) task scheduling problem has been proven to be NP-hard. The traditional meta-heuristics is easy to converge too early or too late, and difficult to ensure the quality of the final solution. To address the AEOS task scheduling problem more effectively, a data-driven improved genetic algorithm (DDIGA) is proposed, which is composed of a traditional genetic algorithm, an artificial neural network(ANN), a frequent pattern-based new solutions construction procedure, and competition-based adaptive local adjustment strategy. In DDIGA, the data from the real-world or the history of the search is used to train the ANN model, and then the initial population is built by the trained ANN model. Next, some high-quality solutions created by selection, crossover, mutation operator are gathered to mine the frequent patterns, and some new solutions are constructed based on the chosen patterns. Finally, the new solutions are further improved by an optimization procedure, and competition-based adaptive local adjustment strategy is worked on these solutions with high similarity. Some scenarios are designed to verify the validity of the proposed approach. Extensive experiments on the satellite instances demonstrate that the DDIGA algorithm outperforms the state-of-the-art algorithms in solution quality and computation time. • We study the AEOS scheduling with the time-dependent transition time. • A Data-Driven Improved Genetic Algorithm is proposed to solve the problem. • A novel similarity detection method is proposed to test the population. • A data generation method for ANN training is proposed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助啥,这都是啥采纳,获得10
1秒前
辛勤的孤容完成签到,获得积分10
2秒前
2秒前
2秒前
petrichor应助优美的跳跳糖采纳,获得1020
2秒前
科研通AI2S应助fleee采纳,获得10
2秒前
传奇3应助凝子老师采纳,获得10
3秒前
3秒前
3秒前
theverve完成签到,获得积分10
4秒前
ZJW完成签到,获得积分10
4秒前
完美世界应助bitahu采纳,获得10
4秒前
霸王龙完成签到,获得积分10
5秒前
7秒前
8秒前
YYJ25发布了新的文献求助10
8秒前
伯赏诗霜发布了新的文献求助50
9秒前
霸王龙发布了新的文献求助10
9秒前
ZJW发布了新的文献求助10
10秒前
ptjam完成签到 ,获得积分10
11秒前
miss发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
sun发布了新的文献求助10
15秒前
Ava应助土里刨星星的鱼采纳,获得10
17秒前
欢呼冰岚完成签到,获得积分10
17秒前
大王卡发布了新的文献求助30
17秒前
凝子老师发布了新的文献求助10
17秒前
优雅海雪发布了新的文献求助10
19秒前
19秒前
正在获取昵称中...完成签到,获得积分10
21秒前
研白完成签到 ,获得积分10
22秒前
蜜雪冰城完成签到,获得积分10
22秒前
狂歌痛饮空度日完成签到,获得积分10
23秒前
隐形曼青应助侦察兵采纳,获得10
23秒前
欢呼冰岚发布了新的文献求助50
24秒前
陵铛铛铛发布了新的文献求助10
24秒前
搜集达人应助caoyy采纳,获得10
24秒前
YYJ25发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849