A data-driven improved genetic algorithm for agile earth observation satellite scheduling with time-dependent transition time

渡线 计算机科学 调度(生产过程) 人口 遗传算法 启发式 地球观测卫星 算法 数据挖掘 人工智能 数学优化 机器学习 卫星 工程类 数学 社会学 航空航天工程 人口学 操作系统
作者
Jian Wu,Bingyu Song,Guoting Zhang,Junwei Ou,Yuning Chen,Feng Yao,Lei He,Lining Xing
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:174: 108823-108823 被引量:12
标识
DOI:10.1016/j.cie.2022.108823
摘要

The agile earth observation satellite (AEOS) task scheduling problem has been proven to be NP-hard. The traditional meta-heuristics is easy to converge too early or too late, and difficult to ensure the quality of the final solution. To address the AEOS task scheduling problem more effectively, a data-driven improved genetic algorithm (DDIGA) is proposed, which is composed of a traditional genetic algorithm, an artificial neural network(ANN), a frequent pattern-based new solutions construction procedure, and competition-based adaptive local adjustment strategy. In DDIGA, the data from the real-world or the history of the search is used to train the ANN model, and then the initial population is built by the trained ANN model. Next, some high-quality solutions created by selection, crossover, mutation operator are gathered to mine the frequent patterns, and some new solutions are constructed based on the chosen patterns. Finally, the new solutions are further improved by an optimization procedure, and competition-based adaptive local adjustment strategy is worked on these solutions with high similarity. Some scenarios are designed to verify the validity of the proposed approach. Extensive experiments on the satellite instances demonstrate that the DDIGA algorithm outperforms the state-of-the-art algorithms in solution quality and computation time. • We study the AEOS scheduling with the time-dependent transition time. • A Data-Driven Improved Genetic Algorithm is proposed to solve the problem. • A novel similarity detection method is proposed to test the population. • A data generation method for ANN training is proposed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seven发布了新的文献求助10
3秒前
bzd完成签到 ,获得积分10
3秒前
4秒前
涵涵涵发布了新的文献求助10
4秒前
酷波er应助曾梦采纳,获得10
5秒前
6秒前
大胆人英完成签到,获得积分10
8秒前
无花果应助菠萝派采纳,获得10
9秒前
吴彦祖发布了新的文献求助10
9秒前
11秒前
TTT完成签到 ,获得积分10
12秒前
12秒前
Owen完成签到,获得积分10
13秒前
13秒前
高高雪瑶完成签到,获得积分10
13秒前
卿雪尔发布了新的文献求助10
14秒前
14秒前
吴彦祖完成签到,获得积分20
14秒前
FashionBoy应助涵涵涵采纳,获得50
15秒前
zzz发布了新的文献求助10
15秒前
扎心应助DQ采纳,获得10
16秒前
光撒盐完成签到,获得积分10
17秒前
17秒前
王星星发布了新的文献求助10
18秒前
聪慧芷巧发布了新的文献求助10
19秒前
烟花应助吴彦祖采纳,获得10
19秒前
sophiemore完成签到,获得积分10
19秒前
chen完成签到,获得积分10
19秒前
21秒前
21秒前
22秒前
曾梦发布了新的文献求助10
23秒前
田様应助来碗豆腐采纳,获得10
23秒前
23秒前
细心笑卉完成签到 ,获得积分10
24秒前
Owen应助Bright24采纳,获得10
24秒前
chopin完成签到,获得积分10
24秒前
菠萝派发布了新的文献求助10
25秒前
hackfeng完成签到,获得积分10
26秒前
chopin发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956069
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107074
捐赠科研通 3232847
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870396
科研通“疑难数据库(出版商)”最低求助积分说明 802019