A data-driven improved genetic algorithm for agile earth observation satellite scheduling with time-dependent transition time

渡线 计算机科学 调度(生产过程) 人口 遗传算法 启发式 地球观测卫星 算法 数据挖掘 人工智能 数学优化 机器学习 卫星 工程类 数学 社会学 航空航天工程 人口学 操作系统
作者
Jian Wu,Bingyu Song,Guoting Zhang,Junwei Ou,Yuning Chen,Feng Yao,Lei He,Lining Xing
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:174: 108823-108823 被引量:12
标识
DOI:10.1016/j.cie.2022.108823
摘要

The agile earth observation satellite (AEOS) task scheduling problem has been proven to be NP-hard. The traditional meta-heuristics is easy to converge too early or too late, and difficult to ensure the quality of the final solution. To address the AEOS task scheduling problem more effectively, a data-driven improved genetic algorithm (DDIGA) is proposed, which is composed of a traditional genetic algorithm, an artificial neural network(ANN), a frequent pattern-based new solutions construction procedure, and competition-based adaptive local adjustment strategy. In DDIGA, the data from the real-world or the history of the search is used to train the ANN model, and then the initial population is built by the trained ANN model. Next, some high-quality solutions created by selection, crossover, mutation operator are gathered to mine the frequent patterns, and some new solutions are constructed based on the chosen patterns. Finally, the new solutions are further improved by an optimization procedure, and competition-based adaptive local adjustment strategy is worked on these solutions with high similarity. Some scenarios are designed to verify the validity of the proposed approach. Extensive experiments on the satellite instances demonstrate that the DDIGA algorithm outperforms the state-of-the-art algorithms in solution quality and computation time. • We study the AEOS scheduling with the time-dependent transition time. • A Data-Driven Improved Genetic Algorithm is proposed to solve the problem. • A novel similarity detection method is proposed to test the population. • A data generation method for ANN training is proposed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助食品小帕菜采纳,获得10
1秒前
2秒前
小林不熬夜完成签到 ,获得积分10
2秒前
jzy完成签到,获得积分20
2秒前
tianchanghao发布了新的文献求助10
3秒前
英俊的铭应助调皮黑猫采纳,获得30
4秒前
程雯慧发布了新的文献求助10
4秒前
大模型应助noriZHC采纳,获得10
4秒前
共享精神应助骆钧采纳,获得10
4秒前
6秒前
6秒前
6秒前
6秒前
zero_sky发布了新的文献求助10
6秒前
7秒前
8秒前
温言叮叮铛完成签到,获得积分10
9秒前
ll发布了新的文献求助10
9秒前
斯文败类应助坚强荧荧采纳,获得10
9秒前
tianchanghao完成签到,获得积分10
9秒前
英姑应助科研通管家采纳,获得10
10秒前
10秒前
不配.应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
嗯哼应助科研通管家采纳,获得20
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得20
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
magnolia5335完成签到 ,获得积分10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
高贵熊猫发布了新的文献求助10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160558
求助须知:如何正确求助?哪些是违规求助? 2811730
关于积分的说明 7893251
捐赠科研通 2470605
什么是DOI,文献DOI怎么找? 1315658
科研通“疑难数据库(出版商)”最低求助积分说明 630920
版权声明 602042