化学
羟醛反应
立体化学
醛缩酶A
恶臭假单胞菌
羧酸盐
还原酶
立体选择性
加合物
有机化学
酶
催化作用
作者
Carlos J. Moreno,Karel Hernández,Samantha Gittings,Michael Bolte,Jesús Joglar,Jordi Bujons,Teodor Parella,Pere Clapés
标识
DOI:10.1021/acscatal.3c00367
摘要
Chiral 2-hydroxy acids and 2-hydroxy-4-butyrolactone derivatives are structural motifs often found in fine and commodity chemicals. Here, we report a tandem biocatalytic stereodivergent route for the preparation of these compounds using three stereoselective aldolases and two stereocomplementary ketoreductases using simple and achiral starting materials. The strategy comprises (i) aldol addition reaction of 2-oxoacids to aldehydes using two aldolases from E. coli, 3-methyl-2-oxobutanoate hydroxymethyltransferase (KPHMT Ecoli ), 2-keto-3-deoxy-l-rhamnonate aldolase (YfaU Ecoli ), and trans-o-hydroxybenzylidene pyruvate hydratase-aldolase from Pseudomonas putida (HBPA Pputida ) and (ii) subsequent 2-oxogroup reduction of the aldol adduct by ketopantoate reductase from E. coli (KPR Ecoli ) and a Δ1-piperidine-2-carboxylate/Δ1-pyrroline-2-carboxylate reductase from Pseudomonas syringae pv. tomato DSM 50315 (DpkA Psyrin ) with uncovered promiscuous ketoreductase activity. A total of 29 structurally diverse compounds were prepared: both enantiomers of 2-hydroxy-4-butyrolactone (>99% ee), 21 2-hydroxy-3-substituted-4-butyrolactones with the (2R,3S), (2S,3S), (2R,3R), or (2S,3R) configuration (from 60:40 to 98:2 dr), and 6 2-hydroxy-4-substituted-4-butyrolactones with the (2S,4R) configuration (from 87:13 to 98:2 dr). Conversions of aldol adducts varied from 32 to 98%, while quantitative conversions were achieved by both ketoreductases, with global isolated yields between 20 and 45% for most of the examples. One-pot one-step cascade reactions were successfully conducted achieving isolated yields from 30 to 57%.
科研通智能强力驱动
Strongly Powered by AbleSci AI