Interactive Prognosis Framework Between Deep Learning and a Stochastic Process Model for Remaining Useful Life Prediction

计算机科学 人工智能 深度学习 过程(计算) 随机梯度下降算法 功能(生物学) 机器学习 构造(python库) 降级(电信) 领域(数学) 匹配(统计) 大数据 数据挖掘 人工神经网络 数学 统计 电信 进化生物学 纯数学 生物 程序设计语言 操作系统
作者
Hong Pei,Xiaosheng Si,Tianmei Li,Zhengxin Zhang,Yaguo Lei
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:8
标识
DOI:10.1109/tnnls.2023.3310482
摘要

Uncertainty quantification of the remaining useful life (RUL) for degraded systems under the big data era has been a hot topic in recent years. A general idea is to execute two separate steps: deep-learning-based health indicator (HI) construction and stochastic process-based degradation modeling. However, there exists a critical matching defect between the constructed HI and a degradation model, which seriously affects the RUL prediction accuracy. Toward this end, this article proposes an interactive prognosis framework between deep learning and a stochastic process model for the RUL prediction. First, we resort to stacked contractive autoencoders to fuse multiple sensor information of historical systems for constructing the HI in a typical unsupervised manner. Then, considering the nonlinear characteristic of the constructed HI, an exponential-like degradation model is introduced to construct its degradation evolving model, and theoretical expressions of the prediction results are derived under the concept of the first hitting time. Furthermore, we design an optimization objective function by integrating the HI construction and degradation modeling for the RUL prediction. To minimize the designed objective function of the proposed interactive prognosis framework, a gradient descent algorithm is employed to update the model parameters. Based on the well-trained interactive prognosis model, we can obtain the HI of a field system from stacked contractive autoencoders with sensor data and the probability density function (pdf) of the predicted RUL on the basis of the estimated parameters. Finally, the effectiveness and superiority of the proposed interactive prognosis method are verified by two case studies associated with turbofan engines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
不安枕头完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
111完成签到 ,获得积分10
4秒前
lkjh完成签到,获得积分10
7秒前
伯言完成签到,获得积分20
8秒前
木cheng发布了新的文献求助10
9秒前
bronny发布了新的文献求助10
9秒前
9秒前
10秒前
朴素难敌完成签到,获得积分10
13秒前
由天与完成签到,获得积分10
16秒前
can完成签到,获得积分10
18秒前
柠檬不吃酸完成签到 ,获得积分10
19秒前
彦希完成签到 ,获得积分10
19秒前
俭朴的宛完成签到 ,获得积分10
20秒前
研友_Y59785应助bronny采纳,获得10
20秒前
LingYun完成签到,获得积分10
22秒前
24秒前
28秒前
bronny完成签到,获得积分10
28秒前
28秒前
Profeto发布了新的文献求助10
28秒前
天天快乐应助汪汪别吃了采纳,获得10
29秒前
醉熏的宝马完成签到,获得积分10
32秒前
111发布了新的文献求助10
33秒前
谦谦神棍完成签到,获得积分10
34秒前
34秒前
35秒前
Profeto完成签到,获得积分10
35秒前
雷培发布了新的文献求助10
35秒前
36秒前
狂奔弟弟2完成签到 ,获得积分10
37秒前
CodeCraft应助昭昭找不到采纳,获得10
38秒前
39秒前
桃子发布了新的文献求助10
42秒前
42秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975