亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BTV-CMAB: A Bi-Directional Trust Verification-Based Combinatorial Multiarmed Bandit Scheme for Mobile Crowdsourcing

众包 计算机科学 方案(数学) 计算机网络 数学 数学分析 万维网
作者
Jianheng Tang,Kejia Fan,Wenxuan Xie,Feijiang Han,Zhenzhe Qu,Anfeng Liu,Naixue Xiong,Shaobo Zhang,Tian Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 1925-1938 被引量:9
标识
DOI:10.1109/jiot.2023.3325274
摘要

Mobile crowdsourcing (MCS) is an emerging paradigm that harnesses the collective power of the crowd to tackle large-scale tasks. To ensure the high-quality worker selection, various combinatorial multiarmed bandit (CMAB)-based schemes have been proposed. However, previous schemes often overlook critical issues. First, the post-unknown worker recruitment (PUWR) problem emerges when the quality of a worker remains unknown despite reported worker data. Second, the presence of Sybil Requesters is often neglected, who manipulate ratings to deceive workers for malicious purposes. To tackle these challenges, we present an innovative scheme called bi-directional trust verification-based CMAB (BTV-CMAB). First, we propose a truth quality discovery approach that effectively addresses the PUWR problem by estimating worker quality. Additionally, we employ a BTV mechanism to assess the Degree of Trust (DoT) of requesters and the reputation of workers. To select top-notch workers for MCS, we combine the worker quality and reputation into an upper confidence bound (UCB) index. The effectiveness of the BTV-CMAB scheme is supported by theoretical proof, which demonstrates its ability to ensure truthfulness and individual rationality. Furthermore, experimental results reveal promising improvements achieved by our scheme, including a 17.44%, increase in the platform's revenue and a significant decrease in regret of up to 88.26%. To the best of our knowledge, this study is the first to propose utilizing a BTV mechanism to effectively address the PUWR problem and counter the threat of Sybil attacks in the CMAB-based worker recruitment process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
djdh完成签到 ,获得积分10
5秒前
领导范儿应助伊可创采纳,获得10
52秒前
打打应助jimmylafs采纳,获得10
54秒前
伊可创完成签到,获得积分20
1分钟前
simitundeins应助科研通管家采纳,获得50
1分钟前
1分钟前
陶醉紫青发布了新的文献求助10
1分钟前
Demi_Ming完成签到,获得积分10
1分钟前
qx完成签到,获得积分10
1分钟前
Saven发布了新的文献求助10
2分钟前
2分钟前
3分钟前
加菲丰丰完成签到,获得积分0
3分钟前
Saven发布了新的文献求助10
3分钟前
Saven完成签到,获得积分10
3分钟前
yuzh完成签到 ,获得积分10
4分钟前
bkagyin应助斯文墨镜采纳,获得10
4分钟前
小白菜完成签到,获得积分10
4分钟前
4分钟前
liudy发布了新的文献求助30
4分钟前
斯文墨镜发布了新的文献求助10
4分钟前
Sunnpy完成签到 ,获得积分10
5分钟前
充电宝应助科研通管家采纳,获得10
5分钟前
5分钟前
JamesPei应助斯文墨镜采纳,获得10
5分钟前
5分钟前
5分钟前
123456发布了新的文献求助10
5分钟前
Kevin完成签到,获得积分10
6分钟前
...完成签到,获得积分10
6分钟前
さくま完成签到,获得积分10
7分钟前
手术刀完成签到 ,获得积分10
7分钟前
竹子完成签到,获得积分10
8分钟前
周周南完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
灰灰发布了新的文献求助10
8分钟前
8分钟前
9分钟前
英姑应助SDNUDRUG采纳,获得10
9分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3521536
求助须知:如何正确求助?哪些是违规求助? 3102893
关于积分的说明 9261754
捐赠科研通 2799034
什么是DOI,文献DOI怎么找? 1536357
邀请新用户注册赠送积分活动 714778
科研通“疑难数据库(出版商)”最低求助积分说明 708462