An approach to ship target detection based on combined optimization model of dehazing and detection

计算机科学 人工智能 目标检测 计算机视觉 图像(数学) 接头(建筑物) 模式识别(心理学) 建筑工程 工程类
作者
Tao Liu,Zhao Zhang,Zhengling Lei,Yuchi Huo,Shuo Wang,Jiansen Zhao,Jinfeng Zhang,Xin Jin,Xiaocai Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107332-107332 被引量:8
标识
DOI:10.1016/j.engappai.2023.107332
摘要

The design of a ship detection model that can be adapted to both foggy and clear images faces significant challenges. Existing methods are either not accurate enough, or have a high amount of model parameters, making them difficult to deploy to lightweight front-ends. To address these issues, a lightweight deep learning model based on combined optimization of dehazing and detection is proposed, focusing on self-adaptive ship detection. Firstly, a self-adaptive image dehazing module is designed and placed ahead of the detection network, including a dehazing parameter predictor and an improved dehazing method. Subsequently, a lightweight-improved object detection deep learning model integrated with the dehazing module is devised to detect the ship in the foggy image. Experimental results demonstrate the effectiveness of this approach in enabling efficient and accurate ship detection under foggy conditions. Through the joint optimization of the dehazing module and the detection module, it can be seen from the experiments that our Dehazing + Detection model has the highest detection accuracy and performs well in terms of detection speed, parameter amount, and weight file size. The detection accuracy has reached 97.1%, which is better than that of the other three dehazing + detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yelis完成签到 ,获得积分10
1秒前
2秒前
李爱国应助aaaaaa采纳,获得10
2秒前
3秒前
longliang发布了新的文献求助10
3秒前
小蘑菇应助晓阳采纳,获得10
4秒前
贝壳发布了新的文献求助10
4秒前
羅卜貳完成签到,获得积分0
5秒前
5秒前
weiwei完成签到,获得积分20
6秒前
求助发布了新的文献求助10
6秒前
复杂向彤发布了新的文献求助10
6秒前
淡然的绮兰应助bobo采纳,获得10
10秒前
我爱乒乓球完成签到,获得积分10
10秒前
10秒前
白桦林完成签到 ,获得积分10
13秒前
闪闪梦曼完成签到,获得积分10
14秒前
She发布了新的文献求助10
15秒前
晓阳发布了新的文献求助10
15秒前
三侠完成签到,获得积分10
17秒前
马62发布了新的文献求助10
18秒前
迹K完成签到,获得积分10
18秒前
搜集达人应助bobo采纳,获得10
18秒前
18秒前
kangyiyi完成签到,获得积分10
22秒前
JunJun完成签到 ,获得积分10
22秒前
满意白卉发布了新的文献求助10
23秒前
25秒前
25秒前
柔弱的信封完成签到,获得积分10
25秒前
bkagyin应助Kristin采纳,获得10
26秒前
xutong de完成签到,获得积分10
28秒前
rxx关注了科研通微信公众号
28秒前
29秒前
Alex完成签到,获得积分10
30秒前
30秒前
科目三应助故意的篮球采纳,获得10
30秒前
April发布了新的文献求助10
30秒前
Maosha发布了新的文献求助10
31秒前
1005完成签到 ,获得积分10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163395
求助须知:如何正确求助?哪些是违规求助? 2814263
关于积分的说明 7904141
捐赠科研通 2473792
什么是DOI,文献DOI怎么找? 1317118
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602187