已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An approach to ship target detection based on combined optimization model of dehazing and detection

计算机科学 人工智能 目标检测 计算机视觉 图像(数学) 接头(建筑物) 模式识别(心理学) 工程类 建筑工程
作者
Tao Liu,Zhao Zhang,Zhengling Lei,Yuchi Huo,Shuo Wang,Jiansen Zhao,Jinfeng Zhang,Xin Jin,Xiaocai Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107332-107332 被引量:14
标识
DOI:10.1016/j.engappai.2023.107332
摘要

The design of a ship detection model that can be adapted to both foggy and clear images faces significant challenges. Existing methods are either not accurate enough, or have a high amount of model parameters, making them difficult to deploy to lightweight front-ends. To address these issues, a lightweight deep learning model based on combined optimization of dehazing and detection is proposed, focusing on self-adaptive ship detection. Firstly, a self-adaptive image dehazing module is designed and placed ahead of the detection network, including a dehazing parameter predictor and an improved dehazing method. Subsequently, a lightweight-improved object detection deep learning model integrated with the dehazing module is devised to detect the ship in the foggy image. Experimental results demonstrate the effectiveness of this approach in enabling efficient and accurate ship detection under foggy conditions. Through the joint optimization of the dehazing module and the detection module, it can be seen from the experiments that our Dehazing + Detection model has the highest detection accuracy and performs well in terms of detection speed, parameter amount, and weight file size. The detection accuracy has reached 97.1%, which is better than that of the other three dehazing + detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
7秒前
调皮秋完成签到,获得积分20
10秒前
爱宝乐宝福宝应助赵杰采纳,获得10
11秒前
13秒前
14秒前
20秒前
20秒前
田様应助科研通管家采纳,获得10
20秒前
猪猪hero应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
我是老大应助科研通管家采纳,获得10
20秒前
20秒前
猪猪hero应助科研通管家采纳,获得10
21秒前
Venovenom发布了新的文献求助30
21秒前
情怀应助tt采纳,获得10
22秒前
Akim应助坚强枫采纳,获得10
23秒前
23秒前
26秒前
鼠鼠完成签到 ,获得积分10
28秒前
onlyan发布了新的文献求助20
29秒前
mpenny77发布了新的文献求助30
29秒前
十四发布了新的文献求助10
30秒前
32秒前
脑洞疼应助yaling采纳,获得10
35秒前
35秒前
36秒前
mpenny77完成签到,获得积分10
38秒前
多肉葡萄完成签到 ,获得积分10
40秒前
SciGPT应助大面包采纳,获得10
41秒前
42秒前
cc发布了新的文献求助10
42秒前
Rondab应助十四采纳,获得10
46秒前
怕孤独的访云完成签到 ,获得积分10
46秒前
SYLH应助晶晶采纳,获得10
48秒前
kokoko完成签到,获得积分10
48秒前
48秒前
夙夙发布了新的文献求助10
50秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989857
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255679
捐赠科研通 3270758
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882195
科研通“疑难数据库(出版商)”最低求助积分说明 809208