红景天苷
药物数据库
小桶
系统药理学
对接(动物)
交互网络
AKT1型
计算生物学
活性成分
药理学
传统医学
化学
PI3K/AKT/mTOR通路
信号转导
生物
医学
生物化学
转录组
基因
基因表达
护理部
药品
作者
Shuyuan Liu,Chen Haoyu
标识
DOI:10.1038/s41598-023-48277-0
摘要
Abstract To analyse the mechanism of Nardostachyos Radix et Rhizoma–Salidroside in the treatment of Premature Ventricular Brats by using network pharmacology and molecular docking and to provide the basis for developing the use of experimental and clinical traditional Chinese medicine. The chemical compositions of Nardostachyos Radix et Rhizoma and Salidroside were determined, and their related targets were predicted. The disease-related targets were obtained by searching the common disease databases Genecards, OMIM, Drugbank and DisGeNET, and the intersection between the predicted targets and the disease targets was determined. Then using the STRING database to set up the protein‒protein interactions (PPIs) network between Nardostachyos Radix et Rhizoma–Salidroside and the common targets of PVB. An “herb-ingredient-target” network was constructed and analyzed by Cytoscape3.7.2 software. Using the metascape database to analysis the predicted therapeutic targets based on the GO and KEGG. Finally, molecular docking technology was used toconfirm the capacity of the primary active ingredients of the 2 herbs to bind to central targets using the online CB-Dock2 database. 41 active components of Nardostachyos Radix et Rhizoma–Salidroside were detected, with 420 potential targets of action, with a total of 1688 PVB targets, and the top 10 core targets of herb-disease degree values were AKT1, TNF, GAPDH, SRC, PPARG, EGFR, PTGS2, ESR1, MMP9, and STAT3. KEGG analysis indicated that its mechanism may be related to the calcium signalling pathway, cancer signalling pathway, AGE-RAGE signalling pathway and other pathways. Molecular docking suggested that main of the active ingredients of the Nardostachyos Radix et Rhizoma–Salidroside pairs were well bound to the core targets. Based on novel network pharmacology and molecular docking validation research methods, we revealed for the first time the potential mechanism of Nardostachyos Radix et Rhizoma–Salidroside in PVB therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI