Unveiling enhanced dark photocatalysis: Electron storage-enabled hydrogen production in polymeric carbon nitride

光催化 人工光合作用 光化学 氮化碳 材料科学 制氢 半导体 电子受体 电子 电子空穴 化学 光电子学 催化作用 物理 有机化学 量子力学
作者
Laiyu Luo,Siyu Wang,Liping Zhang,Xudong Xiao,Baogang Wu,Mietek Jaroniec,Baojiang Jiang
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:343: 123475-123475 被引量:14
标识
DOI:10.1016/j.apcatb.2023.123475
摘要

Researchers have successfully replicated light-driven reactions of natural photosynthesis on semiconductors. However, an important problem limiting practical applications of these reactions is their dependence on light. Catalytic activity of the semiconductors is lost once light ceases, as the generation of charge carriers (i.e., electron-hole pairs) stops. In light of this problem, photosynthetic reactions in the dark are worthy of extra attention. Despite several reports on dark photocatalysis, the energy conversion efficiency remains low, and the mechanism is unclear. In this study, we developed an artificial photocatalytic system capable of decoupling the light and dark hydrogen production reactions. The system is composed of polymeric carbon nitride (PCN), in which electron storage sites are deliberately created. By tuning the number of the electron storage sites in the system, a record hydrogen production rate of 1480 μmol g−1 h−1 was achieved after termination of the visible-light (λ > 420 nm) illumination. In-situ spectroscopic techniques reveal that these electron reservoirs are composed of cyanamide groups capable of storing electrons. Moreover, these electron reservoirs can be excited and show surface plasmon resonance (SPR) effects, leading to the enhanced optical absorption. Importantly, the oxidation side of the dark photocatalytic reaction is found to stem from a cascade reaction involving hole-derived radicals rather than electron-generated oxygenic species reported in literature. We established a complete and stepwise dark photocatalytic reaction process as well as distinguished a rate-determining step.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳不起来的大神完成签到 ,获得积分10
刚刚
科研乐色完成签到,获得积分10
刚刚
Drew完成签到,获得积分10
2秒前
挤爆沙丁鱼完成签到 ,获得积分10
2秒前
彭于晏应助fff采纳,获得10
2秒前
2秒前
Agernon应助yaya采纳,获得10
2秒前
四夕完成签到 ,获得积分10
3秒前
汉堡包应助执着的小蘑菇采纳,获得10
3秒前
西哈哈发布了新的文献求助10
3秒前
搜集达人应助酷炫大树采纳,获得10
4秒前
4秒前
4秒前
外向的沅完成签到,获得积分20
4秒前
bkagyin应助zy采纳,获得10
5秒前
香蕉觅云应助好了采纳,获得10
5秒前
南逸然发布了新的文献求助10
6秒前
6秒前
xiaohe完成签到,获得积分10
6秒前
6秒前
隐形曼青应助camera采纳,获得10
6秒前
狗狗完成签到 ,获得积分10
7秒前
SciGPT应助Melody采纳,获得10
7秒前
听粥发布了新的文献求助10
7秒前
小张在进步完成签到,获得积分10
8秒前
科研通AI5应助WNL采纳,获得10
8秒前
阿蒙发布了新的文献求助10
8秒前
自觉石头完成签到 ,获得积分10
9秒前
田様应助岁月轮回采纳,获得10
9秒前
hao完成签到,获得积分10
9秒前
bjbbh发布了新的文献求助10
9秒前
皓月千里完成签到,获得积分10
9秒前
夏小安完成签到,获得积分10
9秒前
10秒前
ymh完成签到,获得积分10
10秒前
starry发布了新的文献求助10
10秒前
hualidy完成签到,获得积分10
10秒前
qifa完成签到,获得积分10
10秒前
10秒前
春夏秋冬发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678