Prediction and explanation of debris flow velocity based on multi-strategy fusion Stacking ensemble learning model

泥石流 堆积 碎片 集成学习 融合 地质学 流量(数学) 环境科学 机械 计算机科学 人工智能 物理 语言学 海洋学 哲学 核磁共振
作者
Tianlong Wang,Keying Zhang,Zhenghua Liu,Tianxing Ma,Rui Luo,Hao Chen,Yan Wang,Ge Wei,Hongyue Sun
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:638: 131347-131347 被引量:2
标识
DOI:10.1016/j.jhydrol.2024.131347
摘要

The debris flow velocity fundamentally determines its intensity, thereby rendering its prediction a crucial aspect of disaster prevention and control strategies. However, accurate velocity prediction has consistently posed significant challenges due to the intricate interplay of various influential factors. To address the limitations of existing models, an explainable multi-strategy fusion of Stacking ensemble learning is proposed. Initially, an improved snake optimization (ISO) algorithm is employed to adjust parameters within the model's learners. Benchmark function comparison tests are then conducted to validate the reliability of the ISO algorithm. Subsequently, a learner selection method based on predictive performance and degree of difference is established to facilitate the selection of basic learners and meta-learners. This leads to the construction of the Stacking ensemble learning model, achieved through the integration of parameter optimization strategies from the improved swarm intelligence algorithm strategy, the error weighting strategy, and the decomposition strategy. To assess the model, a case study of the Jiangjiagou Gulley debris flow is undertaken, focusing on the prediction of the debris flow velocity. The results demonstrate high predictive accuracy, with RMSE, MAE, and MAPE values of 0.19, 0.17, and 2.46% respectively. Furthermore, under the SHAP framework, global and local explanations of the predictions are provided. Through feature importance analysis, the bed slope gradient is identified as the most crucial feature in the velocity prediction of the Jiangjiagou Gulley debris flow. Coupling effects and contributions of input features to the debris flow velocity prediction are further analyzed and explained through feature interaction analysis and single sample analysis. This study not only provides a new method for debris flow velocity prediction but also provides guiding suggestions for debris flow monitoring and control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nuonuomimi完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
ele_yuki完成签到,获得积分10
3秒前
zhaxiao完成签到,获得积分10
5秒前
xixixixix完成签到,获得积分20
5秒前
6秒前
6秒前
的风格发布了新的文献求助10
7秒前
十月的天空完成签到,获得积分10
8秒前
嗯嗯完成签到 ,获得积分10
8秒前
hujin完成签到,获得积分10
9秒前
anyunyi发布了新的文献求助10
9秒前
赘婿应助甜蜜的乌龟采纳,获得10
10秒前
飞羽发布了新的文献求助10
10秒前
无名老大应助刻苦问凝采纳,获得30
12秒前
思源应助xixixixix采纳,获得10
12秒前
14秒前
淡淡的小蘑菇完成签到 ,获得积分10
15秒前
学术废物发布了新的文献求助10
15秒前
归尘发布了新的文献求助20
20秒前
慢歌完成签到 ,获得积分10
20秒前
Gheros完成签到,获得积分20
21秒前
22秒前
领导范儿应助李静采纳,获得10
22秒前
23秒前
23秒前
科目三应助7907采纳,获得10
24秒前
27秒前
liu完成签到,获得积分10
28秒前
30秒前
阿巴阿巴发布了新的文献求助10
32秒前
34秒前
xh完成签到,获得积分20
35秒前
35秒前
Giny发布了新的文献求助10
35秒前
ZZ完成签到 ,获得积分10
37秒前
dada发布了新的文献求助10
39秒前
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465478
求助须知:如何正确求助?哪些是违规求助? 3058648
关于积分的说明 9062429
捐赠科研通 2748998
什么是DOI,文献DOI怎么找? 1508231
科研通“疑难数据库(出版商)”最低求助积分说明 696880
邀请新用户注册赠送积分活动 696535