Stable Learning via Triplex Learning

计算机科学 心理学 人工智能 认知科学
作者
Shuai Yang,Tingting Jiang,Qianlong Dang,Lichuan Gu,Xindong Wu
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/tai.2024.3404411
摘要

Stable learning aims to learn a model that generalizes well to arbitrary unseen target domain by leveraging a single source domain. Recent advances in stable learning have focused on balancing the distribution of confounders for each feature to eliminate spurious correlations. However, previous studies treat all features equally without considering the difficulty of confounder balancing associated with different features, and regard irrelevant features as confounders, deteriorating generalization performance. To tackle these issues, this paper proposes a novel Triplex Learning (TriL) based stable learning algorithm, which performs sample reweighting, causal feature selection, and representation learning to remove spurious correlations. Specifically, first, TriL adaptively assigns weights to the confounder balancing term of each feature in accordance with the difficulty of confounder balancing, and aligns the confounder distribution of each feature by learning a group of sample weights. Second, TriL integrates the sample weights into a weighted cross-entropy model to compute causal effects of features for excluding irrelevant features from the confounder set. Finally, TriL relearns a set of sample weights and uses them to guide a new supervised dual-autoencoder containing two classifiers to learn feature representations. TriL forces the results of two classifiers to remain consistent for removing spurious correlations by using a cross-classifier consistency regularization. Extensive experiments on synthetic and two real-world datasets show the superiority of TriL compared with seven methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助yangyang采纳,获得10
刚刚
仄兀发布了新的文献求助10
刚刚
小小鱼发布了新的文献求助10
刚刚
孙成成完成签到 ,获得积分10
1秒前
ee完成签到,获得积分10
1秒前
刘德华完成签到,获得积分10
1秒前
Disci完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
帅气鹭洋发布了新的文献求助10
3秒前
夏昼发布了新的文献求助10
3秒前
cometx完成签到 ,获得积分10
4秒前
路之遥兮发布了新的文献求助10
4秒前
yy发布了新的文献求助10
4秒前
4秒前
852应助100采纳,获得10
4秒前
爱静静应助cruise采纳,获得10
5秒前
Singularity应助cruise采纳,获得10
5秒前
VDC应助cruise采纳,获得30
5秒前
5秒前
5秒前
了晨完成签到 ,获得积分10
6秒前
小xy完成签到,获得积分10
6秒前
7秒前
小昼完成签到 ,获得积分10
7秒前
尊敬的完成签到,获得积分10
8秒前
8秒前
整齐海秋完成签到,获得积分10
8秒前
8秒前
善学以致用应助白榆采纳,获得10
8秒前
JamesPei应助易达采纳,获得10
9秒前
9秒前
9秒前
圣晟胜发布了新的文献求助10
9秒前
xx发布了新的文献求助10
10秒前
忧郁觅柔完成签到 ,获得积分10
10秒前
追寻夜香发布了新的文献求助10
10秒前
昊康好完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678