Stable Learning via Triplex Learning

计算机科学 心理学 人工智能 认知科学
作者
Shuai Yang,Tingting Jiang,Qianlong Dang,Lichuan Gu,Xindong Wu
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/tai.2024.3404411
摘要

Stable learning aims to learn a model that generalizes well to arbitrary unseen target domain by leveraging a single source domain. Recent advances in stable learning have focused on balancing the distribution of confounders for each feature to eliminate spurious correlations. However, previous studies treat all features equally without considering the difficulty of confounder balancing associated with different features, and regard irrelevant features as confounders, deteriorating generalization performance. To tackle these issues, this paper proposes a novel Triplex Learning (TriL) based stable learning algorithm, which performs sample reweighting, causal feature selection, and representation learning to remove spurious correlations. Specifically, first, TriL adaptively assigns weights to the confounder balancing term of each feature in accordance with the difficulty of confounder balancing, and aligns the confounder distribution of each feature by learning a group of sample weights. Second, TriL integrates the sample weights into a weighted cross-entropy model to compute causal effects of features for excluding irrelevant features from the confounder set. Finally, TriL relearns a set of sample weights and uses them to guide a new supervised dual-autoencoder containing two classifiers to learn feature representations. TriL forces the results of two classifiers to remain consistent for removing spurious correlations by using a cross-classifier consistency regularization. Extensive experiments on synthetic and two real-world datasets show the superiority of TriL compared with seven methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
klio完成签到 ,获得积分10
1秒前
科研通AI2S应助zhaozhuangming采纳,获得10
2秒前
完美世界应助Crane采纳,获得30
2秒前
在水一方应助WCQ采纳,获得10
2秒前
浮尘完成签到,获得积分10
3秒前
忽忽完成签到,获得积分10
5秒前
6秒前
起风了发布了新的文献求助10
7秒前
8秒前
9秒前
356发布了新的文献求助20
12秒前
家迎松发布了新的文献求助10
12秒前
byecslx发布了新的文献求助10
12秒前
12秒前
dxh发布了新的文献求助10
13秒前
二十六画生完成签到,获得积分10
14秒前
WCQ发布了新的文献求助10
16秒前
起风了完成签到,获得积分20
17秒前
英俊的铭应助JinwenShi采纳,获得10
17秒前
20秒前
英姑应助dxh采纳,获得10
21秒前
22秒前
23秒前
书生也要读书完成签到,获得积分20
23秒前
23秒前
ssw完成签到,获得积分10
23秒前
野原完成签到,获得积分20
25秒前
byecslx发布了新的文献求助10
25秒前
一天一个苹果儿完成签到 ,获得积分10
26秒前
26秒前
26秒前
WCQ完成签到,获得积分10
26秒前
九月发布了新的文献求助20
28秒前
冬天快乐发布了新的文献求助10
29秒前
Orange应助亦屿森采纳,获得10
30秒前
淀粉肠发布了新的文献求助10
31秒前
今后应助野原采纳,获得10
31秒前
32秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138860
求助须知:如何正确求助?哪些是违规求助? 2789795
关于积分的说明 7792655
捐赠科研通 2446147
什么是DOI,文献DOI怎么找? 1300890
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079