已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MSCLK: Multi-scale fully separable convolution neural network with large kernels for early diagnosis of Alzheimer’s disease

卷积(计算机科学) 计算机科学 可分离空间 比例(比率) 疾病 人工神经网络 人工智能 卷积神经网络 核(代数) 阿尔茨海默病 模式识别(心理学) 数学 医学 病理 纯数学 数学分析 地图学 地理
作者
Run-Feng Tian,Jia-Ni Li,Shao‐Wu Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 124241-124241 被引量:1
标识
DOI:10.1016/j.eswa.2024.124241
摘要

Alzheimer's disease (AD) is identified as a central nervous system disease that exhibits irreversible degeneration, while mild cognitive impairment (MCI) is viewed as the preliminary stage of AD, and its pathogenesis is notably intricate. MCI contains two stages: early MCI (EMCI), and late MCI (LMCI). EMCI diagnosis can prevent EMCI from progressing to LMCI, and then to AD. Therefore, accurate diagnosis of EMCI/LMCI is crucial for developing the early intervention and treatment strategies of AD. Currently, most existing EMCI/LMCI diagnostic methods use single modality images, while different modality images carry different complementary information that helps for accurate diagnosis of EMCI/LMCI, and the lesion area is usually not limited to a single brain area, which involves multiple regions. In this case, conventional convolution operations cannot be able to accurately extract the pathological features of AD. In this work, we propose a novel Multi-scale fully Separable Convolution neural network with Large Kernels (MSCLK) method to diagnose early Alzheimer's disease with structural Magnetic Resonance Imaging (sMRI) images. MSCLK mainly consists of the multi-scale 3D fully separable convolution modules and the deep metric learning module. The multi-scale convolution that contains both small and large kernels is used to effectively capture the discrimination features of different scale acceptance domains. 3D fully separable convolution is used to reduce parameters and overfitting. The deep metric learning is used to learn hard samples that are similar but belong to different classes. We also propose a variant method of MSCLK (called MSCLK-Fusion MRI and PET, MSCLK-FMP) by adding the pixel-level fusion module and feature-level fusion module into the MSCLK framework to integrate the sMRI image and the Positron Emission Computed Tomography (PET) image for further improving the accuracy of EMCI vs. LMCI classification task. The pixel-level fusion is used to achieve early pixel-level fusion of sMRI and PET images, and the feature-level fusion is used to achieve high-dimensional feature-level fusion of sMRI and PET images. Experimental results on the ADNI database show that the performance of our MSCLK and MSCLK-FMP are superior to other state-of-the-art methods. The accuracy of MSCLK achieves 98.89%, 95.97%, 96.39% and 98.76% for AD vs. EMCI, AD vs. LMCI, EMCI vs. NC and LMCI vs. NC classification tasks, respectively, and MSCLK-FMP achieves 93.93% for EMCI vs. LMCI classification task, indicating that MSCLK/MSCLK-FMP can be effectively used for diagnosing MCI patients. Moreover, our MSCLK-FMP is capable of pinpointing key brain areas involved in the pathological progression of MCI, such as the Temporal_Inf, the Hippocampus, the Precuneus, the Precentral, and the Thalamus. These findings contribute to uncovering the early onset of AD pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
766465完成签到 ,获得积分0
刚刚
怕黑钢笔完成签到 ,获得积分10
刚刚
科研通AI6应助小池同学采纳,获得10
1秒前
2秒前
tp040900发布了新的文献求助10
3秒前
旺仔先生完成签到 ,获得积分10
4秒前
4秒前
陈粒完成签到 ,获得积分10
4秒前
WindDreamer完成签到,获得积分10
5秒前
西奥牧马完成签到 ,获得积分10
5秒前
77完成签到 ,获得积分10
5秒前
CipherSage应助桥抱千嶂采纳,获得10
5秒前
zhaoxi完成签到 ,获得积分10
5秒前
疯狂的凡梦完成签到 ,获得积分10
6秒前
怡然剑成完成签到 ,获得积分10
6秒前
活泼子轩完成签到 ,获得积分10
6秒前
清新的宛丝完成签到,获得积分10
6秒前
wenlong完成签到 ,获得积分10
6秒前
luohao发布了新的文献求助10
6秒前
杨廷友完成签到 ,获得积分10
6秒前
qvB完成签到,获得积分10
6秒前
光屁屁的鸡崽完成签到,获得积分10
7秒前
丘比特应助孤独蘑菇采纳,获得10
7秒前
林中雀完成签到 ,获得积分10
7秒前
Tsin778完成签到 ,获得积分10
7秒前
动人的向松完成签到 ,获得积分10
7秒前
故意的寒安完成签到 ,获得积分10
9秒前
上上签发布了新的文献求助10
9秒前
在水一方应助梁海萍采纳,获得10
10秒前
monster完成签到 ,获得积分10
10秒前
hx完成签到 ,获得积分10
11秒前
Ava应助不点采纳,获得10
12秒前
杨远杰完成签到 ,获得积分10
13秒前
鱼鱼完成签到 ,获得积分10
13秒前
可耐的盈完成签到,获得积分10
14秒前
王者归来完成签到,获得积分10
14秒前
马哈哈完成签到 ,获得积分10
14秒前
wszzb完成签到,获得积分10
14秒前
水若琳完成签到 ,获得积分10
15秒前
qq完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925461
求助须知:如何正确求助?哪些是违规求助? 4195826
关于积分的说明 13030926
捐赠科研通 3967287
什么是DOI,文献DOI怎么找? 2174555
邀请新用户注册赠送积分活动 1191821
关于科研通互助平台的介绍 1101483

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10