MSCLK: Multi-scale fully separable convolution neural network with large kernels for early diagnosis of Alzheimer’s disease

卷积(计算机科学) 计算机科学 可分离空间 比例(比率) 疾病 人工神经网络 人工智能 卷积神经网络 核(代数) 阿尔茨海默病 模式识别(心理学) 数学 医学 病理 纯数学 数学分析 地图学 地理
作者
Run-Feng Tian,Jia-Ni Li,Shao‐Wu Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 124241-124241 被引量:1
标识
DOI:10.1016/j.eswa.2024.124241
摘要

Alzheimer's disease (AD) is identified as a central nervous system disease that exhibits irreversible degeneration, while mild cognitive impairment (MCI) is viewed as the preliminary stage of AD, and its pathogenesis is notably intricate. MCI contains two stages: early MCI (EMCI), and late MCI (LMCI). EMCI diagnosis can prevent EMCI from progressing to LMCI, and then to AD. Therefore, accurate diagnosis of EMCI/LMCI is crucial for developing the early intervention and treatment strategies of AD. Currently, most existing EMCI/LMCI diagnostic methods use single modality images, while different modality images carry different complementary information that helps for accurate diagnosis of EMCI/LMCI, and the lesion area is usually not limited to a single brain area, which involves multiple regions. In this case, conventional convolution operations cannot be able to accurately extract the pathological features of AD. In this work, we propose a novel Multi-scale fully Separable Convolution neural network with Large Kernels (MSCLK) method to diagnose early Alzheimer's disease with structural Magnetic Resonance Imaging (sMRI) images. MSCLK mainly consists of the multi-scale 3D fully separable convolution modules and the deep metric learning module. The multi-scale convolution that contains both small and large kernels is used to effectively capture the discrimination features of different scale acceptance domains. 3D fully separable convolution is used to reduce parameters and overfitting. The deep metric learning is used to learn hard samples that are similar but belong to different classes. We also propose a variant method of MSCLK (called MSCLK-Fusion MRI and PET, MSCLK-FMP) by adding the pixel-level fusion module and feature-level fusion module into the MSCLK framework to integrate the sMRI image and the Positron Emission Computed Tomography (PET) image for further improving the accuracy of EMCI vs. LMCI classification task. The pixel-level fusion is used to achieve early pixel-level fusion of sMRI and PET images, and the feature-level fusion is used to achieve high-dimensional feature-level fusion of sMRI and PET images. Experimental results on the ADNI database show that the performance of our MSCLK and MSCLK-FMP are superior to other state-of-the-art methods. The accuracy of MSCLK achieves 98.89%, 95.97%, 96.39% and 98.76% for AD vs. EMCI, AD vs. LMCI, EMCI vs. NC and LMCI vs. NC classification tasks, respectively, and MSCLK-FMP achieves 93.93% for EMCI vs. LMCI classification task, indicating that MSCLK/MSCLK-FMP can be effectively used for diagnosing MCI patients. Moreover, our MSCLK-FMP is capable of pinpointing key brain areas involved in the pathological progression of MCI, such as the Temporal_Inf, the Hippocampus, the Precuneus, the Precentral, and the Thalamus. These findings contribute to uncovering the early onset of AD pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
高高发布了新的文献求助10
3秒前
隐形映菱完成签到,获得积分10
3秒前
Ava应助明亮不乐采纳,获得10
7秒前
chong0919完成签到,获得积分10
8秒前
10秒前
在水一方应助童道之采纳,获得10
11秒前
阳光的虔纹完成签到 ,获得积分10
18秒前
李健应助cis2014采纳,获得10
19秒前
lucyliu完成签到 ,获得积分10
23秒前
23秒前
24秒前
搜集达人应助Amanda采纳,获得10
25秒前
沉默不言发布了新的文献求助10
27秒前
怡然剑成完成签到 ,获得积分10
28秒前
xxxxxxlp完成签到 ,获得积分10
28秒前
30秒前
32秒前
魯蛋完成签到,获得积分10
33秒前
在水一方应助老艺术家采纳,获得10
33秒前
高桥凉介完成签到 ,获得积分10
34秒前
阿南完成签到 ,获得积分10
36秒前
明亮不乐发布了新的文献求助10
37秒前
Jasper应助一二采纳,获得10
37秒前
Aurora完成签到,获得积分10
40秒前
like完成签到,获得积分10
41秒前
半凡完成签到,获得积分10
41秒前
星河完成签到,获得积分10
42秒前
xwh完成签到,获得积分10
44秒前
小淘气发布了新的文献求助10
44秒前
明亮不乐完成签到,获得积分20
45秒前
卡皮巴拉yuan完成签到,获得积分10
49秒前
bkagyin应助HJH采纳,获得10
50秒前
高高高完成签到 ,获得积分10
50秒前
老实星月完成签到,获得积分10
50秒前
张凡完成签到 ,获得积分10
50秒前
51秒前
Joseph发布了新的文献求助50
52秒前
feifanyin完成签到,获得积分10
53秒前
feifanyin发布了新的文献求助10
56秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951026
求助须知:如何正确求助?哪些是违规求助? 3496458
关于积分的说明 11082124
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801003