MSCLK: Multi-scale fully separable convolution neural network with large kernels for early diagnosis of Alzheimer’s disease

卷积(计算机科学) 计算机科学 可分离空间 比例(比率) 疾病 人工神经网络 人工智能 卷积神经网络 核(代数) 阿尔茨海默病 模式识别(心理学) 数学 医学 病理 纯数学 数学分析 地图学 地理
作者
Run-Feng Tian,Jia-Ni Li,Shao‐Wu Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124241-124241
标识
DOI:10.1016/j.eswa.2024.124241
摘要

Alzheimer's disease (AD) is identified as a central nervous system disease that exhibits irreversible degeneration, while mild cognitive impairment (MCI) is viewed as the preliminary stage of AD, and its pathogenesis is notably intricate. MCI contains two stages: early MCI (EMCI), and late MCI (LMCI). EMCI diagnosis can prevent EMCI from progressing to LMCI, and then to AD. Therefore, accurate diagnosis of EMCI/LMCI is crucial for developing the early intervention and treatment strategies of AD. Currently, most existing EMCI/LMCI diagnostic methods use single modality images, while different modality images carry different complementary information that helps for accurate diagnosis of EMCI/LMCI, and the lesion area is usually not limited to a single brain area, which involves multiple regions. In this case, conventional convolution operations cannot be able to accurately extract the pathological features of AD. In this work, we propose a novel Multi-scale fully Separable Convolution neural network with Large Kernels (MSCLK) method to diagnose early Alzheimer's disease with structural Magnetic Resonance Imaging (sMRI) images. MSCLK mainly consists of the multi-scale 3D fully separable convolution modules and the deep metric learning module. The multi-scale convolution that contains both small and large kernels is used to effectively capture the discrimination features of different scale acceptance domains. 3D fully separable convolution is used to reduce parameters and overfitting. The deep metric learning is used to learn hard samples that are similar but belong to different classes. We also propose a variant method of MSCLK (called MSCLK-Fusion MRI and PET, MSCLK-FMP) by adding the pixel-level fusion module and feature-level fusion module into the MSCLK framework to integrate the sMRI image and the Positron Emission Computed Tomography (PET) image for further improving the accuracy of EMCI vs. LMCI classification task. The pixel-level fusion is used to achieve early pixel-level fusion of sMRI and PET images, and the feature-level fusion is used to achieve high-dimensional feature-level fusion of sMRI and PET images. Experimental results on the ADNI database show that the performance of our MSCLK and MSCLK-FMP are superior to other state-of-the-art methods. The accuracy of MSCLK achieves 98.89%, 95.97%, 96.39% and 98.76% for AD vs. EMCI, AD vs. LMCI, EMCI vs. NC and LMCI vs. NC classification tasks, respectively, and MSCLK-FMP achieves 93.93% for EMCI vs. LMCI classification task, indicating that MSCLK/MSCLK-FMP can be effectively used for diagnosing MCI patients. Moreover, our MSCLK-FMP is capable of pinpointing key brain areas involved in the pathological progression of MCI, such as the Temporal_Inf, the Hippocampus, the Precuneus, the Precentral, and the Thalamus. These findings contribute to uncovering the early onset of AD pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耗尽完成签到,获得积分10
刚刚
daisyyyyy发布了新的文献求助10
1秒前
Lynn完成签到,获得积分10
1秒前
1秒前
细腻的嫣然完成签到,获得积分20
1秒前
RMQ2025完成签到,获得积分10
2秒前
小蘑菇应助爱尚采纳,获得10
2秒前
勤恳山晴完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
勤劳汽车发布了新的文献求助10
4秒前
123456完成签到 ,获得积分10
4秒前
咋还发布了新的文献求助10
5秒前
搬砖的化学男应助dandandan采纳,获得10
5秒前
所所应助welch采纳,获得10
6秒前
勤恳山晴发布了新的文献求助80
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
辛勤的苡发布了新的文献求助30
8秒前
清脆仙人掌完成签到,获得积分10
9秒前
ypp发布了新的文献求助10
9秒前
Sunhignway完成签到,获得积分10
9秒前
9秒前
LLL发布了新的文献求助10
10秒前
脑洞疼应助liuttinn采纳,获得10
10秒前
shice951229完成签到 ,获得积分10
11秒前
赘婿应助生动孤丝采纳,获得10
11秒前
小青年儿完成签到 ,获得积分10
11秒前
11秒前
12秒前
羲月完成签到,获得积分10
12秒前
Sunhignway发布了新的文献求助10
12秒前
小哲发布了新的文献求助10
12秒前
12秒前
英姑应助科研通管家采纳,获得10
12秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119837
求助须知:如何正确求助?哪些是违规求助? 2770280
关于积分的说明 7703883
捐赠科研通 2425650
什么是DOI,文献DOI怎么找? 1288160
科研通“疑难数据库(出版商)”最低求助积分说明 620913
版权声明 599970