Selection and prioritization of candidate combination regimens for the treatment of tuberculosis

优先次序 肺结核 吡嗪酰胺 药品 医学 临床试验 药理学 利福平 内科学 病理 管理科学 经济
作者
Natasha Strydom,Rob C. van Wijk,Qianwen Wang,Jacqueline P. Ernest,Linda Chaba,Ziran Li,Eric L. Nuermberger,Radojka M. Savić
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:17 (784)
标识
DOI:10.1126/scitranslmed.adi4000
摘要

Accelerated tuberculosis drug discovery has increased the number of plausible multidrug regimens. Testing every drug combination in vivo is impractical, and varied experimental conditions make it challenging to compare results between experiments. Using published treatment efficacy data from a mouse tuberculosis model treated with candidate combination regimens, we trained and externally validated integrative mathematical models to predict relapse in mice and to rank both previously experimentally studied and unstudied regimens by their sterilization potential. We generated 18 datasets of 18 candidate regimens (comprising 11 drugs of six classes, including fluoroquinolone, nitroimidazole, diarylquinolines, and oxazolidinones), with 2965 relapse and 1544 colony-forming unit (CFU) observations for analysis. Statistical and machine learning techniques were applied to predict the probability of relapse in mice. The locked down mathematical model had an area under the receiver operating characteristic curve (AUROC) of 0.910 and showed that bacterial kill measured by longitudinal CFU cannot account for relapse alone and that sterilization is drug dependent. The diarylquinolines had the highest predicted sterilizing activity in the mouse model, and the addition of pyrazinamide to drug regimens provided the shortest estimated tuberculosis treatment duration to cure in mice. The mathematical model predicted the effect of treatment combinations, and these predictions were validated by conducting 11 experiments on previously unstudied regimens, achieving an AUROC of 0.829. We surmise that the next generation of tuberculosis drugs are highly effective at treatment shortening and suggest that there are several promising three- and four-drug regimens that should be advanced to clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
童宝完成签到,获得积分10
刚刚
英姑应助duts采纳,获得30
1秒前
siriuslee99发布了新的文献求助10
1秒前
小幻发布了新的文献求助60
2秒前
2秒前
huy完成签到 ,获得积分10
2秒前
FashionBoy应助tg2024采纳,获得10
3秒前
5秒前
玉兰发布了新的文献求助10
6秒前
了0完成签到 ,获得积分10
6秒前
7秒前
Ar完成签到,获得积分10
8秒前
10秒前
11秒前
杨师傅完成签到 ,获得积分10
11秒前
11秒前
欣荣完成签到,获得积分10
12秒前
13秒前
善学以致用应助童宝采纳,获得10
14秒前
周围完成签到,获得积分10
14秒前
都找到了完成签到,获得积分10
15秒前
niu发布了新的文献求助30
15秒前
迷路的水彤完成签到 ,获得积分10
15秒前
李爱国应助zhang采纳,获得10
16秒前
qsy发布了新的文献求助10
16秒前
xs完成签到,获得积分10
17秒前
小蘑菇应助tg2024采纳,获得10
17秒前
Ar发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
20秒前
21秒前
DOGDAD完成签到,获得积分10
21秒前
22秒前
23秒前
幽凡完成签到 ,获得积分10
23秒前
归尘完成签到,获得积分10
23秒前
24秒前
夜阑卧听完成签到,获得积分10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3759143
求助须知:如何正确求助?哪些是违规求助? 3302211
关于积分的说明 10121437
捐赠科研通 3016595
什么是DOI,文献DOI怎么找? 1656540
邀请新用户注册赠送积分活动 790536
科研通“疑难数据库(出版商)”最低求助积分说明 753886