聚酰胺
化学工程
膜
接触角
表面改性
润湿
表面粗糙度
聚乙二醇
图层(电子)
X射线光电子能谱
材料科学
粘附
聚醚酰亚胺
高分子化学
结垢
化学
表面光洁度
逐层
纳米技术
聚合物
复合材料
工程类
生物化学
作者
Christopher M. Stafford,Xun Guan,Yarong Qi,Yue Zhang,Xitong Liu
标识
DOI:10.1016/j.memsci.2022.120855
摘要
Molecular layer-by-layer (mLbL) deposition of highly crosslinked polyamide-based membranes affords flexibility and control over membrane properties such as thickness, roughness, and chemistry of the selective membrane layer. Of particular interest is the ability to non-destructively tailor the surface chemistry of the membrane for a particular purpose, such as enhancing hydrophilicity or minimizing membrane fouling. Here, we show that the surface chemistry of the mLbL membrane can be tuned via termination reactions to render the surface rich in –COOH, −NH2, −polyethylene glycol (−PEG), or −fluorinated groups. We systematically characterize the resulting surfaces with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) to validate successful modification and to ensure the low surface roughness is maintained, respectively. We then use pH-dependent contact angle and carboxylate-modified colloidal probe AFM to measure the surface wettability and adhesion of the modified surfaces. The measured adhesion force follows the ranking –NH2 ≫ −fluorinated > –COOH ≈ −PEG, where the –COOH and −PEG are repulsive due to charge interactions and hydration state, respectively. Combined with the low surface roughness afforded by mLbL deposition, surface functionalization through termination reactions as shown here will allow researchers to disentangle contributions of surface chemistry from surface roughness to the overall performance and fouling of polyamide-based membranes for water purification and advanced chemical separations.
科研通智能强力驱动
Strongly Powered by AbleSci AI