Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning

布里氏评分 毒物控制 心理学 伤害预防 接收机工作特性 回顾性队列研究 医学 自杀未遂 纵向研究 机器学习 急诊医学 内科学 计算机科学 病理
作者
Colin G. Walsh,Jessica D. Ribeiro,Joseph C. Franklin
出处
期刊:Journal of Child Psychology and Psychiatry [Wiley]
卷期号:59 (12): 1261-1270 被引量:196
标识
DOI:10.1111/jcpp.12916
摘要

Background Adolescents have high rates of nonfatal suicide attempts, but clinically practical risk prediction remains a challenge. Screening can be time consuming to implement at scale, if it is done at all. Computational algorithms may predict suicide risk using only routinely collected clinical data. We used a machine learning approach validated on longitudinal clinical data in adults to address this challenge in adolescents. Methods This is a retrospective, longitudinal cohort study. Data were collected from the Vanderbilt Synthetic Derivative from January 1998 to December 2015 and included 974 adolescents with nonfatal suicide attempts and multiple control comparisons: 496 adolescents with other self‐injury ( OSI ), 7,059 adolescents with depressive symptoms, and 25,081 adolescent general hospital controls. Candidate predictors included diagnostic, demographic, medication, and socioeconomic factors. Outcome was determined by multiexpert review of electronic health records. Random forests were validated with optimism adjustment at multiple time points (from 1 week to 2 years). Recalibration was done via isotonic regression. Evaluation metrics included discrimination ( AUC , sensitivity/specificity, precision/recall) and calibration (calibration plots, slope/intercept, Brier score). Results Computational models performed well and did not require face‐to‐face screening. Performance improved as suicide attempts became more imminent. Discrimination was good in comparison with OSI controls ( AUC = 0.83 [0.82–0.84] at 720 days; AUC = 0.85 [0.84–0.87] at 7 days) and depressed controls ( AUC = 0.87 [95% CI 0.85–0.90] at 720 days; 0.90 [0.85–0.94] at 7 days) and best in comparison with general hospital controls ( AUC 0.94 [0.92–0.96] at 720 days; 0.97 [0.95–0.98] at 7 days). Random forests significantly outperformed logistic regression in every comparison. Recalibration improved performance as much as ninefold – clinical recommendations with poorly calibrated predictions can lead to decision errors. Conclusions Machine learning on longitudinal clinical data may provide a scalable approach to broaden screening for risk of nonfatal suicide attempts in adolescents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言多必失完成签到,获得积分10
刚刚
刚刚
用行舍藏完成签到,获得积分10
1秒前
老猪佩奇完成签到,获得积分10
2秒前
楚小儿完成签到 ,获得积分10
5秒前
打工是不可能打工的完成签到 ,获得积分10
6秒前
大豆终结者完成签到,获得积分10
7秒前
7秒前
六步郎完成签到,获得积分10
8秒前
Cuz完成签到,获得积分10
8秒前
pigeonKimi完成签到,获得积分0
9秒前
Ada大侦探发布了新的文献求助10
10秒前
米夏完成签到 ,获得积分10
10秒前
acaizr完成签到,获得积分10
10秒前
无解完成签到,获得积分10
11秒前
他的狗完成签到,获得积分10
11秒前
谷粱诗云完成签到,获得积分20
12秒前
化合物来完成签到,获得积分10
13秒前
靓丽的初蝶完成签到,获得积分20
13秒前
acaizr发布了新的文献求助10
14秒前
bkagyin应助8y24dp采纳,获得10
15秒前
15秒前
18秒前
yY0720发布了新的文献求助10
19秒前
晚风完成签到,获得积分10
20秒前
sjsuA完成签到,获得积分10
21秒前
晚风发布了新的文献求助10
23秒前
23秒前
biov完成签到,获得积分10
24秒前
严小磨完成签到 ,获得积分10
26秒前
YY完成签到,获得积分10
26秒前
27秒前
无心完成签到 ,获得积分10
27秒前
漂亮灵阳完成签到,获得积分10
28秒前
牧绯完成签到,获得积分10
28秒前
夜信完成签到,获得积分10
29秒前
Ada大侦探发布了新的文献求助10
29秒前
xianjingli完成签到,获得积分10
30秒前
iuhgnor完成签到,获得积分10
30秒前
30秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052675
求助须知:如何正确求助?哪些是违规求助? 2709926
关于积分的说明 7418483
捐赠科研通 2354527
什么是DOI,文献DOI怎么找? 1246159
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921