Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning

布里氏评分 毒物控制 心理学 伤害预防 接收机工作特性 回顾性队列研究 医学 自杀未遂 纵向研究 机器学习 急诊医学 内科学 计算机科学 病理
作者
Colin G. Walsh,Jessica D. Ribeiro,Joseph C. Franklin
出处
期刊:Journal of Child Psychology and Psychiatry [Wiley]
卷期号:59 (12): 1261-1270 被引量:196
标识
DOI:10.1111/jcpp.12916
摘要

Background Adolescents have high rates of nonfatal suicide attempts, but clinically practical risk prediction remains a challenge. Screening can be time consuming to implement at scale, if it is done at all. Computational algorithms may predict suicide risk using only routinely collected clinical data. We used a machine learning approach validated on longitudinal clinical data in adults to address this challenge in adolescents. Methods This is a retrospective, longitudinal cohort study. Data were collected from the Vanderbilt Synthetic Derivative from January 1998 to December 2015 and included 974 adolescents with nonfatal suicide attempts and multiple control comparisons: 496 adolescents with other self‐injury ( OSI ), 7,059 adolescents with depressive symptoms, and 25,081 adolescent general hospital controls. Candidate predictors included diagnostic, demographic, medication, and socioeconomic factors. Outcome was determined by multiexpert review of electronic health records. Random forests were validated with optimism adjustment at multiple time points (from 1 week to 2 years). Recalibration was done via isotonic regression. Evaluation metrics included discrimination ( AUC , sensitivity/specificity, precision/recall) and calibration (calibration plots, slope/intercept, Brier score). Results Computational models performed well and did not require face‐to‐face screening. Performance improved as suicide attempts became more imminent. Discrimination was good in comparison with OSI controls ( AUC = 0.83 [0.82–0.84] at 720 days; AUC = 0.85 [0.84–0.87] at 7 days) and depressed controls ( AUC = 0.87 [95% CI 0.85–0.90] at 720 days; 0.90 [0.85–0.94] at 7 days) and best in comparison with general hospital controls ( AUC 0.94 [0.92–0.96] at 720 days; 0.97 [0.95–0.98] at 7 days). Random forests significantly outperformed logistic regression in every comparison. Recalibration improved performance as much as ninefold – clinical recommendations with poorly calibrated predictions can lead to decision errors. Conclusions Machine learning on longitudinal clinical data may provide a scalable approach to broaden screening for risk of nonfatal suicide attempts in adolescents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研微微完成签到 ,获得积分10
1秒前
小青椒应助木木采纳,获得20
1秒前
2秒前
wyh99完成签到,获得积分10
2秒前
bing完成签到 ,获得积分10
2秒前
zhaopeipei完成签到,获得积分10
3秒前
Sway完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
刘强发布了新的文献求助10
5秒前
6秒前
yuanquaner完成签到,获得积分10
6秒前
隐形曼青应助ofa采纳,获得30
8秒前
哇哇哇发布了新的文献求助10
9秒前
10秒前
12完成签到,获得积分10
11秒前
JamesPei应助王阿欣采纳,获得10
11秒前
许子健发布了新的文献求助30
11秒前
Taelihar发布了新的文献求助30
12秒前
Criminology34应助llllliu采纳,获得10
12秒前
14秒前
93发布了新的文献求助10
15秒前
ding应助菜的睡不着采纳,获得10
16秒前
18秒前
19秒前
mujianhua完成签到,获得积分20
21秒前
21秒前
大个应助hhh采纳,获得10
22秒前
22秒前
23秒前
kitty发布了新的文献求助10
24秒前
lily发布了新的文献求助10
24秒前
24秒前
善学以致用应助徐志豪采纳,获得10
24秒前
回家睡觉完成签到,获得积分10
25秒前
甜蜜秋蝶完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288471
求助须知:如何正确求助?哪些是违规求助? 4440345
关于积分的说明 13824326
捐赠科研通 4322585
什么是DOI,文献DOI怎么找? 2372663
邀请新用户注册赠送积分活动 1368105
关于科研通互助平台的介绍 1331949