Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning

布里氏评分 毒物控制 心理学 伤害预防 接收机工作特性 回顾性队列研究 医学 自杀未遂 纵向研究 机器学习 急诊医学 内科学 计算机科学 病理
作者
Colin G. Walsh,Jessica D. Ribeiro,Joseph C. Franklin
出处
期刊:Journal of Child Psychology and Psychiatry [Wiley]
卷期号:59 (12): 1261-1270 被引量:196
标识
DOI:10.1111/jcpp.12916
摘要

Background Adolescents have high rates of nonfatal suicide attempts, but clinically practical risk prediction remains a challenge. Screening can be time consuming to implement at scale, if it is done at all. Computational algorithms may predict suicide risk using only routinely collected clinical data. We used a machine learning approach validated on longitudinal clinical data in adults to address this challenge in adolescents. Methods This is a retrospective, longitudinal cohort study. Data were collected from the Vanderbilt Synthetic Derivative from January 1998 to December 2015 and included 974 adolescents with nonfatal suicide attempts and multiple control comparisons: 496 adolescents with other self‐injury ( OSI ), 7,059 adolescents with depressive symptoms, and 25,081 adolescent general hospital controls. Candidate predictors included diagnostic, demographic, medication, and socioeconomic factors. Outcome was determined by multiexpert review of electronic health records. Random forests were validated with optimism adjustment at multiple time points (from 1 week to 2 years). Recalibration was done via isotonic regression. Evaluation metrics included discrimination ( AUC , sensitivity/specificity, precision/recall) and calibration (calibration plots, slope/intercept, Brier score). Results Computational models performed well and did not require face‐to‐face screening. Performance improved as suicide attempts became more imminent. Discrimination was good in comparison with OSI controls ( AUC = 0.83 [0.82–0.84] at 720 days; AUC = 0.85 [0.84–0.87] at 7 days) and depressed controls ( AUC = 0.87 [95% CI 0.85–0.90] at 720 days; 0.90 [0.85–0.94] at 7 days) and best in comparison with general hospital controls ( AUC 0.94 [0.92–0.96] at 720 days; 0.97 [0.95–0.98] at 7 days). Random forests significantly outperformed logistic regression in every comparison. Recalibration improved performance as much as ninefold – clinical recommendations with poorly calibrated predictions can lead to decision errors. Conclusions Machine learning on longitudinal clinical data may provide a scalable approach to broaden screening for risk of nonfatal suicide attempts in adolescents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助圣迭戈采纳,获得10
1秒前
Criminology34应助ccczzz采纳,获得10
1秒前
华123发布了新的文献求助10
2秒前
2秒前
精明玲完成签到 ,获得积分10
2秒前
浮游应助景飞丹采纳,获得10
3秒前
HJJHJH发布了新的文献求助20
3秒前
萤火虫完成签到,获得积分10
4秒前
香蕉觅云应助f1mike110采纳,获得10
4秒前
Jovie7完成签到,获得积分10
4秒前
cc发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
9秒前
Koalas举报甜橙求助涉嫌违规
10秒前
11秒前
可爱半凡发布了新的文献求助10
11秒前
爱吃五花肉完成签到,获得积分10
11秒前
陶醉的觅夏完成签到,获得积分10
13秒前
会有那么一天完成签到,获得积分10
13秒前
Lucas应助HJJHJH采纳,获得10
13秒前
14秒前
风中莫英完成签到,获得积分10
14秒前
16秒前
Hexagram发布了新的文献求助10
16秒前
17秒前
小马甲应助火星上的诗兰采纳,获得10
20秒前
可爱半凡完成签到,获得积分10
20秒前
HanFeiZi发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
23秒前
李小乙完成签到 ,获得积分10
24秒前
XY12138发布了新的文献求助10
25秒前
羊羊羊发布了新的文献求助10
26秒前
乐观的问旋完成签到,获得积分20
26秒前
26秒前
量子星尘发布了新的文献求助50
27秒前
santley发布了新的文献求助10
28秒前
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125432
求助须知:如何正确求助?哪些是违规求助? 4329244
关于积分的说明 13490706
捐赠科研通 4164104
什么是DOI,文献DOI怎么找? 2282779
邀请新用户注册赠送积分活动 1283854
关于科研通互助平台的介绍 1223137