亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning

布里氏评分 毒物控制 心理学 伤害预防 接收机工作特性 回顾性队列研究 医学 自杀未遂 纵向研究 机器学习 急诊医学 内科学 计算机科学 病理
作者
Colin G. Walsh,Jessica D. Ribeiro,Joseph C. Franklin
出处
期刊:Journal of Child Psychology and Psychiatry [Wiley]
卷期号:59 (12): 1261-1270 被引量:196
标识
DOI:10.1111/jcpp.12916
摘要

Background Adolescents have high rates of nonfatal suicide attempts, but clinically practical risk prediction remains a challenge. Screening can be time consuming to implement at scale, if it is done at all. Computational algorithms may predict suicide risk using only routinely collected clinical data. We used a machine learning approach validated on longitudinal clinical data in adults to address this challenge in adolescents. Methods This is a retrospective, longitudinal cohort study. Data were collected from the Vanderbilt Synthetic Derivative from January 1998 to December 2015 and included 974 adolescents with nonfatal suicide attempts and multiple control comparisons: 496 adolescents with other self‐injury ( OSI ), 7,059 adolescents with depressive symptoms, and 25,081 adolescent general hospital controls. Candidate predictors included diagnostic, demographic, medication, and socioeconomic factors. Outcome was determined by multiexpert review of electronic health records. Random forests were validated with optimism adjustment at multiple time points (from 1 week to 2 years). Recalibration was done via isotonic regression. Evaluation metrics included discrimination ( AUC , sensitivity/specificity, precision/recall) and calibration (calibration plots, slope/intercept, Brier score). Results Computational models performed well and did not require face‐to‐face screening. Performance improved as suicide attempts became more imminent. Discrimination was good in comparison with OSI controls ( AUC = 0.83 [0.82–0.84] at 720 days; AUC = 0.85 [0.84–0.87] at 7 days) and depressed controls ( AUC = 0.87 [95% CI 0.85–0.90] at 720 days; 0.90 [0.85–0.94] at 7 days) and best in comparison with general hospital controls ( AUC 0.94 [0.92–0.96] at 720 days; 0.97 [0.95–0.98] at 7 days). Random forests significantly outperformed logistic regression in every comparison. Recalibration improved performance as much as ninefold – clinical recommendations with poorly calibrated predictions can lead to decision errors. Conclusions Machine learning on longitudinal clinical data may provide a scalable approach to broaden screening for risk of nonfatal suicide attempts in adolescents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大气的剑鬼完成签到,获得积分10
8秒前
林狗完成签到 ,获得积分10
14秒前
20秒前
1分钟前
1分钟前
1分钟前
1分钟前
乐洋洋发布了新的文献求助10
1分钟前
1分钟前
hank完成签到,获得积分10
1分钟前
sirius应助科研通管家采纳,获得10
2分钟前
LPH01发布了新的文献求助10
2分钟前
机智明辉完成签到,获得积分10
2分钟前
2分钟前
不安映秋发布了新的文献求助10
2分钟前
小将军完成签到,获得积分10
2分钟前
3分钟前
3分钟前
..发布了新的文献求助10
3分钟前
柏莉发布了新的文献求助10
3分钟前
Yaon-Xu完成签到,获得积分10
3分钟前
3分钟前
YUYUYU发布了新的文献求助10
3分钟前
3分钟前
充电宝应助Anna Jenna采纳,获得10
3分钟前
4分钟前
Anna Jenna发布了新的文献求助10
4分钟前
爆米花应助Anna Jenna采纳,获得10
4分钟前
薇笑不慌完成签到,获得积分10
4分钟前
爆米花应助dd19930403采纳,获得30
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
dd19930403发布了新的文献求助30
4分钟前
tian发布了新的文献求助10
4分钟前
menglanjun完成签到,获得积分10
4分钟前
minuxSCI完成签到,获得积分10
4分钟前
dd19930403完成签到 ,获得积分20
5分钟前
Benhnhk21完成签到,获得积分10
5分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806917
捐赠科研通 2449807
什么是DOI,文献DOI怎么找? 1303487
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314