Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning

布里氏评分 毒物控制 心理学 伤害预防 接收机工作特性 回顾性队列研究 医学 自杀未遂 纵向研究 机器学习 急诊医学 内科学 计算机科学 病理
作者
Colin G. Walsh,Jessica D. Ribeiro,Joseph C. Franklin
出处
期刊:Journal of Child Psychology and Psychiatry [Wiley]
卷期号:59 (12): 1261-1270 被引量:196
标识
DOI:10.1111/jcpp.12916
摘要

Background Adolescents have high rates of nonfatal suicide attempts, but clinically practical risk prediction remains a challenge. Screening can be time consuming to implement at scale, if it is done at all. Computational algorithms may predict suicide risk using only routinely collected clinical data. We used a machine learning approach validated on longitudinal clinical data in adults to address this challenge in adolescents. Methods This is a retrospective, longitudinal cohort study. Data were collected from the Vanderbilt Synthetic Derivative from January 1998 to December 2015 and included 974 adolescents with nonfatal suicide attempts and multiple control comparisons: 496 adolescents with other self‐injury ( OSI ), 7,059 adolescents with depressive symptoms, and 25,081 adolescent general hospital controls. Candidate predictors included diagnostic, demographic, medication, and socioeconomic factors. Outcome was determined by multiexpert review of electronic health records. Random forests were validated with optimism adjustment at multiple time points (from 1 week to 2 years). Recalibration was done via isotonic regression. Evaluation metrics included discrimination ( AUC , sensitivity/specificity, precision/recall) and calibration (calibration plots, slope/intercept, Brier score). Results Computational models performed well and did not require face‐to‐face screening. Performance improved as suicide attempts became more imminent. Discrimination was good in comparison with OSI controls ( AUC = 0.83 [0.82–0.84] at 720 days; AUC = 0.85 [0.84–0.87] at 7 days) and depressed controls ( AUC = 0.87 [95% CI 0.85–0.90] at 720 days; 0.90 [0.85–0.94] at 7 days) and best in comparison with general hospital controls ( AUC 0.94 [0.92–0.96] at 720 days; 0.97 [0.95–0.98] at 7 days). Random forests significantly outperformed logistic regression in every comparison. Recalibration improved performance as much as ninefold – clinical recommendations with poorly calibrated predictions can lead to decision errors. Conclusions Machine learning on longitudinal clinical data may provide a scalable approach to broaden screening for risk of nonfatal suicide attempts in adolescents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
robin完成签到,获得积分10
3秒前
chester_WU应助小小鱼采纳,获得20
3秒前
东郭一斩完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
科研通AI5应助morris采纳,获得10
4秒前
5秒前
小王完成签到,获得积分10
6秒前
6秒前
最好发布了新的文献求助10
6秒前
含蓄的白安完成签到,获得积分10
6秒前
Wang1991发布了新的文献求助10
6秒前
玉梅发布了新的文献求助10
7秒前
AAAorangeCat发布了新的文献求助10
7秒前
8秒前
科目三应助yifeng11采纳,获得20
8秒前
洞悉发布了新的文献求助10
8秒前
森宝完成签到,获得积分10
9秒前
程佑贵发布了新的文献求助10
9秒前
9秒前
11秒前
Bugu关注了科研通微信公众号
11秒前
11秒前
12秒前
谢谢谢发布了新的文献求助10
14秒前
14秒前
小二郎应助小巧的晓旋采纳,获得10
14秒前
852应助兔宝宝采纳,获得10
14秒前
15秒前
大胆的弼发布了新的文献求助10
15秒前
YuuuY完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
完美世界应助玉梅采纳,获得10
16秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624655
求助须知:如何正确求助?哪些是违规求助? 4024032
关于积分的说明 12456192
捐赠科研通 3708659
什么是DOI,文献DOI怎么找? 2045529
邀请新用户注册赠送积分活动 1077574
科研通“疑难数据库(出版商)”最低求助积分说明 960093