Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning

布里氏评分 毒物控制 心理学 伤害预防 接收机工作特性 回顾性队列研究 医学 自杀未遂 纵向研究 机器学习 急诊医学 内科学 计算机科学 病理
作者
Colin G. Walsh,Jessica D. Ribeiro,Joseph C. Franklin
出处
期刊:Journal of Child Psychology and Psychiatry [Wiley]
卷期号:59 (12): 1261-1270 被引量:196
标识
DOI:10.1111/jcpp.12916
摘要

Background Adolescents have high rates of nonfatal suicide attempts, but clinically practical risk prediction remains a challenge. Screening can be time consuming to implement at scale, if it is done at all. Computational algorithms may predict suicide risk using only routinely collected clinical data. We used a machine learning approach validated on longitudinal clinical data in adults to address this challenge in adolescents. Methods This is a retrospective, longitudinal cohort study. Data were collected from the Vanderbilt Synthetic Derivative from January 1998 to December 2015 and included 974 adolescents with nonfatal suicide attempts and multiple control comparisons: 496 adolescents with other self‐injury ( OSI ), 7,059 adolescents with depressive symptoms, and 25,081 adolescent general hospital controls. Candidate predictors included diagnostic, demographic, medication, and socioeconomic factors. Outcome was determined by multiexpert review of electronic health records. Random forests were validated with optimism adjustment at multiple time points (from 1 week to 2 years). Recalibration was done via isotonic regression. Evaluation metrics included discrimination ( AUC , sensitivity/specificity, precision/recall) and calibration (calibration plots, slope/intercept, Brier score). Results Computational models performed well and did not require face‐to‐face screening. Performance improved as suicide attempts became more imminent. Discrimination was good in comparison with OSI controls ( AUC = 0.83 [0.82–0.84] at 720 days; AUC = 0.85 [0.84–0.87] at 7 days) and depressed controls ( AUC = 0.87 [95% CI 0.85–0.90] at 720 days; 0.90 [0.85–0.94] at 7 days) and best in comparison with general hospital controls ( AUC 0.94 [0.92–0.96] at 720 days; 0.97 [0.95–0.98] at 7 days). Random forests significantly outperformed logistic regression in every comparison. Recalibration improved performance as much as ninefold – clinical recommendations with poorly calibrated predictions can lead to decision errors. Conclusions Machine learning on longitudinal clinical data may provide a scalable approach to broaden screening for risk of nonfatal suicide attempts in adolescents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝一笔完成签到,获得积分10
3秒前
善学以致用应助zyaner采纳,获得10
3秒前
Beatrice完成签到,获得积分10
4秒前
4秒前
奶昔源完成签到,获得积分10
4秒前
魏冉发布了新的文献求助10
5秒前
6秒前
xiaotao发布了新的文献求助10
8秒前
香蕉觅云应助果果采纳,获得10
9秒前
Erin完成签到,获得积分10
9秒前
苏雅霏发布了新的文献求助10
9秒前
9秒前
10秒前
Jasper应助shiyu采纳,获得10
10秒前
CodeCraft应助thomas采纳,获得10
10秒前
cdj发布了新的文献求助10
10秒前
X7完成签到,获得积分10
11秒前
YINGJI发布了新的文献求助10
11秒前
pcr163应助昂口3采纳,获得100
12秒前
gm完成签到,获得积分20
12秒前
小雨点完成签到 ,获得积分10
13秒前
毅宁静610完成签到,获得积分10
14秒前
14秒前
15秒前
he完成签到,获得积分10
15秒前
酷波er应助白了个白采纳,获得10
16秒前
16秒前
16秒前
野葱完成签到,获得积分10
16秒前
隐形的远锋应助HEIGE采纳,获得10
17秒前
小汪发布了新的文献求助10
19秒前
Lucas应助zhuzhu的江湖采纳,获得10
19秒前
20秒前
在水一方应助野葱采纳,获得10
20秒前
gm发布了新的文献求助10
20秒前
柒月发布了新的文献求助10
22秒前
PPPPal发布了新的文献求助10
22秒前
风清扬完成签到,获得积分10
23秒前
YINGJI完成签到,获得积分20
23秒前
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255