腹主动脉瘤
封锁
医学
主动脉瘤
转化生长因子
血栓
细胞外基质
离体
动脉瘤
病理
体内
心脏病学
内科学
生物
细胞生物学
受体
放射科
生物技术
作者
Fabien Lareyre,Marc Clément,Juliette Raffort,Stefanie Pohlod,Meghana Patel,Bruno Esposito,Leanne Master,Alison Finigan,Marie Vandestienne,Nikolaos Stergiopulos,Soraya Taleb,Bram Trachet,Ziad Mallat
标识
DOI:10.1161/atvbaha.117.309999
摘要
Current experimental models of abdominal aortic aneurysm (AAA) do not accurately reproduce the major features of human AAA. We hypothesized that blockade of TGFβ (transforming growth factor-β) activity-a guardian of vascular integrity and immune homeostasis-would impair vascular healing in models of nondissecting AAA and would lead to sustained aneurysmal growth until rupture.Here, we test this hypothesis in the elastase-induced AAA model in mice. We analyze AAA development and progression using ultrasound in vivo, synchrotron-based ultrahigh resolution imaging ex vivo, and a combination of biological, histological, and flow cytometry-based cellular and molecular approaches in vitro. Systemic blockade of TGFβ using a monoclonal antibody induces a transition from a self-contained aortic dilatation to a model of sustained aneurysmal growth, associated with the formation of an intraluminal thrombus. AAA growth is associated with wall disruption but no medial dissection and culminates in fatal transmural aortic wall rupture. TGFβ blockade enhances leukocyte infiltration both in the aortic wall and the intraluminal thrombus and aggravates extracellular matrix degradation. Early blockade of IL-1β or monocyte-dependent responses substantially limits AAA severity. However, blockade of IL-1β after disease initiation has no effect on AAA progression to rupture.Endogenous TGFβ activity is required for the healing of AAA. TGFβ blockade may be harnessed to generate new models of AAA with better relevance to the human disease. We expect that the new models will improve our understanding of the pathophysiology of AAA and will be useful in the identification of new therapeutic targets.
科研通智能强力驱动
Strongly Powered by AbleSci AI