作者
Kai Zhang,Jingyan Zhang,Xurong Wang,Lei Wang,Michela Pugliese,Annamaria Passantino,Jianxi Li
摘要
Sheng Mai Yin (SMY), a well-known Chinese herbal medicine, is widely used to treat cardiac diseases characterized by the deficiency of Qi and Yin syndrome in China. SMY-based treatment has been derived from Traditional Chinese Medicine (TCM), officially recorded in the Chinese Pharmacopoeia. We aimed to clarify whether SMY attenuates myocardial injury induced by adriamycin in Wistar rats with chronic heart failure (CHF). To quantify ginsenoside Rg1, ophiopogonin D, ophiopogonin D’, schisandrin by HPLC. To establish CHF animal model, adriamycin was intraperitoneally injected in Wistar rats for 7 weeks at a dose of 2 mg/kg body weight. Overall, 180 rats were randomly assigned to six groups: control, CHF model, captopril (positive control), high dose (HSMY), medium dose (MSMY), and low dose (LSMY). Experimental rats were fed 0.625 mg/kg captopril and 90 mg/kg, 45 mg/kg, and 22.5 mg/kg SMY, respectively, over 7 weeks. The inflammatory cytokines TNF-α and IL-6 were measured using ELISA. Matrix metalloproteinases (MMPs) were identified using immunohistochemistry (IHC). Both IHC and RT-PCR were used for quantification of COL-IV expression levels in the heart tissues. Scanning electron microscopy (SEM) was used for the visualization of myocardium morphology. The concentration of ginsenoside Rg1, ophiopogonin D, ophiopogonin D’ and schisandrin in SMY was found to be 25.63 ± 3.42 mg, 11.00 ± 1.17 mg, 7.02 ± 0.51 mg, and 25.31 ± 4.28 mg per gram of SMY, respectively. Compared with CHF model group, TNF-α levels were significantly lower (p < .01) in the four drug-administered groups. Moreover, except in the SYM low dose group, IL-6 levels in the other 3 drug-administered groups were also significantly reduced (p < .01). COL-IV expression was also significantly reduced on treatment with high SYM dose (p < .05). IHC results confirmed that SMY and captopril significantly reduced MMPs expression in the heart. SMY could control or slow CHF progression by suppressing pathological changes in the myocardium in CHF models. This could be attributed at least partly to the downregulation of IL-6 and TNF-α and inhibition of overexpression of MMPs and COL-IV, which significantly relieved the cardiac-linked pathologies, decreased the risk of myocardial fibrosis, and inhibited cardiac remodeling. These findings suggested that SMY and captopril have similar efficacy for the treatment of adriamycin-induced myocardial injury. In addition, Chinese herbal preparation SMY may play a role in the treatment of cardiac diseases.