化学
活性氧
细胞内
血红素加氧酶
活力测定
超氧化物歧化酶
抗氧化剂
细胞凋亡
脂质过氧化
细胞损伤
药理学
生物化学
血红素
生物
酶
作者
Kyoung‐A Kim,Sung‐Ho Kook,Ji‐Hye Song,Jeong‐Chae Lee
摘要
Because irradiation may cause osteoradionecrosis, antioxidant supplementation is often used to suppress irradiation-mediated injury. This study examined whether a synthetic phenethyl urea compound, (E)-1-(3,4-dihydroxyphenethyl)-3-(3,4-dihydroxystyryl)urea (DPDS-U), prevents irradiation-mediated cellular damage in MC3T3-E1 osteoblastic cells. A relatively high dose of irradiation (>4 Gy) decreased cell viability and proliferation and induced DNA damage and cell cycle arrest at the G2/M phase with the attendant increase of cyclin B1. Irradiation with 8 Gy induced intracellular reactive oxygen species (ROS) production and lipid peroxidation, and reduced glutathione content and superoxide dismutase activity in the cells. These events were significantly suppressed by treatment with 200 µM DPDS-U or 5 mM N-acetyl cysteine (NAC). DPDS-U or irradiation alone significantly increased heme oxygenase-1 (HO-1) expression and nuclear factor E2 p45-related factor-2 (Nrf2) nuclear translocation. Interestingly, pretreatment with DPDS-U facilitated irradiation-induced activation of the Nrf2/HO-1 pathway. The potential of DPDS-U to mediate HO-1 induction and protect against irradiation-mediated cellular damage was almost completely attenuated by transient transfection with Nrf2-specific siRNA or treatment with a pharmacological HO-1 inhibitor, zinc protoporphyrin IX. Additional experiments revealed that DPDS-U induced a radioprotective mechanism that differs from that induced by NAC through activation of Nrf2/HO-1 signaling. Collectively, our data suggest that DPDS-U-induced radioprotection is due to its dual function as an antioxidant to remove directly excessive intracellular ROS and as a prooxidant to stimulate intracellular redox-sensitive survival signal. J. Cell. Biochem. 115: 1877–1887, 2014. © 2014 Wiley Periodicals, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI