已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Real-Time Trajectory Planning for Autonomous Urban Driving: Framework, Algorithms, and Verifications

弹道 运动规划 计算机科学 路径(计算) 曲线坐标 集合(抽象数据类型) 实时计算 任务(项目管理) 算法 模拟 控制理论(社会学) 机器人 人工智能 工程类 数学 控制(管理) 物理 天文 程序设计语言 系统工程 几何学
作者
Xiaohui Li,Zhenping Sun,Dongpu Cao,Zhen He,Qi Zhu
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 740-753 被引量:282
标识
DOI:10.1109/tmech.2015.2493980
摘要

This paper focuses on the real-time trajectory planning problem for autonomous vehicles driving in realistic urban environments. To solve the complex navigation problem, we adopt a hierarchical motion planning framework. First, a rough reference path is extracted from the digital map using commands from the high-level behavioral planner. The conjugate gradient nonlinear optimization algorithm and the cubic B-spline curve are employed to smoothen and interpolate the reference path sequentially. To follow the refined reference path as well as handle both static and moving objects, the trajectory planning task is decoupled into lateral and longitudinal planning problems within the curvilinear coordinate framework. A rich set of kinematically feasible path candidates are generated to deal with the dynamic traffic both deliberatively and reactively. In the meanwhile, the velocity profile generation is performed to improve driving safety and comfort. After that, the generated trajectories are carefully evaluated by an objective function, which combines behavioral decisions by reasoning about the traffic situations. The optimal collision-free, smooth, and dynamically feasible trajectory is selected and transformed into commands executed by the low-level lateral and longitudinal controllers. Field experiments have been carried out with our test autonomous vehicle on the realistic inner-city roads. The experimental results demonstrated capabilities and effectiveness of the proposed trajectory planning framework and algorithms to safely handle a variety of typical driving scenarios, such as static and moving objects avoidance, lane keeping, and vehicle following, while respecting the traffic rules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开心的野狼完成签到 ,获得积分10
2秒前
pgg发布了新的文献求助10
2秒前
隐形曼青应助靓丽的采白采纳,获得10
3秒前
hhh发布了新的文献求助20
3秒前
Akim应助大力的无声采纳,获得10
4秒前
saveMA完成签到,获得积分10
5秒前
GHOST完成签到,获得积分10
6秒前
pgg完成签到,获得积分10
11秒前
11秒前
13秒前
隐形双双完成签到,获得积分10
15秒前
东方天奇发布了新的文献求助10
17秒前
17秒前
科目三应助pgg采纳,获得10
19秒前
slyhhk完成签到 ,获得积分10
22秒前
22秒前
鸿儒完成签到,获得积分10
22秒前
26秒前
菜菜发布了新的文献求助10
28秒前
菜虫虫发布了新的文献求助10
29秒前
东东完成签到 ,获得积分10
30秒前
香蕉觅云应助我爱蓝胖子采纳,获得10
31秒前
xzy998应助菜菜采纳,获得10
35秒前
35秒前
Solomon完成签到 ,获得积分0
38秒前
阿君发布了新的文献求助10
40秒前
41秒前
okk发布了新的文献求助10
41秒前
囿于昼夜完成签到,获得积分10
42秒前
42秒前
43秒前
46秒前
50秒前
沐沐心完成签到 ,获得积分10
50秒前
我的苞娜公主完成签到,获得积分10
53秒前
852应助孤独靖柏采纳,获得10
55秒前
斯文败类应助大力的无声采纳,获得10
55秒前
我爱蓝胖子完成签到,获得积分10
58秒前
华仔应助科研通管家采纳,获得10
58秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314227
求助须知:如何正确求助?哪些是违规求助? 2946569
关于积分的说明 8530722
捐赠科研通 2622271
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838