Real-Time Trajectory Planning for Autonomous Urban Driving: Framework, Algorithms, and Verifications

弹道 运动规划 计算机科学 路径(计算) 曲线坐标 集合(抽象数据类型) 实时计算 任务(项目管理) 算法 模拟 控制理论(社会学) 机器人 人工智能 工程类 数学 控制(管理) 物理 天文 几何学 程序设计语言 系统工程
作者
Xiaohui Li,Zhenping Sun,Dongpu Cao,Zhen He,Qi Zhu
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 740-753 被引量:284
标识
DOI:10.1109/tmech.2015.2493980
摘要

This paper focuses on the real-time trajectory planning problem for autonomous vehicles driving in realistic urban environments. To solve the complex navigation problem, we adopt a hierarchical motion planning framework. First, a rough reference path is extracted from the digital map using commands from the high-level behavioral planner. The conjugate gradient nonlinear optimization algorithm and the cubic B-spline curve are employed to smoothen and interpolate the reference path sequentially. To follow the refined reference path as well as handle both static and moving objects, the trajectory planning task is decoupled into lateral and longitudinal planning problems within the curvilinear coordinate framework. A rich set of kinematically feasible path candidates are generated to deal with the dynamic traffic both deliberatively and reactively. In the meanwhile, the velocity profile generation is performed to improve driving safety and comfort. After that, the generated trajectories are carefully evaluated by an objective function, which combines behavioral decisions by reasoning about the traffic situations. The optimal collision-free, smooth, and dynamically feasible trajectory is selected and transformed into commands executed by the low-level lateral and longitudinal controllers. Field experiments have been carried out with our test autonomous vehicle on the realistic inner-city roads. The experimental results demonstrated capabilities and effectiveness of the proposed trajectory planning framework and algorithms to safely handle a variety of typical driving scenarios, such as static and moving objects avoidance, lane keeping, and vehicle following, while respecting the traffic rules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
陈同学发布了新的文献求助10
刚刚
orixero应助77采纳,获得10
刚刚
刚刚
Akim应助彩色诗云采纳,获得10
1秒前
泡泡茶壶发布了新的文献求助10
2秒前
烟花应助科研通管家采纳,获得10
3秒前
zdl应助科研通管家采纳,获得30
3秒前
慕青应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
cmwlzhy应助科研通管家采纳,获得50
3秒前
3秒前
5秒前
5秒前
紫色翡翠完成签到,获得积分10
5秒前
ywhys完成签到,获得积分10
5秒前
老君完成签到,获得积分10
5秒前
曾123456发布了新的文献求助10
6秒前
牛马发布了新的文献求助50
7秒前
852应助joossss采纳,获得10
9秒前
10秒前
lixiaojin完成签到,获得积分20
10秒前
高大涵梅完成签到,获得积分20
11秒前
科研通AI2S应助Jiang采纳,获得10
11秒前
陈同学完成签到,获得积分10
12秒前
泡泡茶壶完成签到,获得积分10
12秒前
12秒前
12秒前
笨笨千秋完成签到,获得积分10
12秒前
曾123456完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
Momo完成签到,获得积分10
14秒前
盏盏发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405424
求助须知:如何正确求助?哪些是违规求助? 4523745
关于积分的说明 14095053
捐赠科研通 4437438
什么是DOI,文献DOI怎么找? 2435688
邀请新用户注册赠送积分活动 1427810
关于科研通互助平台的介绍 1406086