Deep learning via LSTM models for COVID-19 infection forecasting in India

深度学习 计算机科学 人工智能 循环神经网络 大流行 2019年冠状病毒病(COVID-19) 寨卡病毒 人口 可靠性(半导体) 机器学习 人工神经网络 数据科学 病毒学 医学 病毒 传染病(医学专业) 疾病 环境卫生 物理 病理 量子力学 功率(物理)
作者
Rohitash Chandra,Ayush Jain,Divyanshu Chauhan
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (1): e0262708-e0262708 被引量:74
标识
DOI:10.1371/journal.pone.0262708
摘要

The COVID-19 pandemic continues to have major impact to health and medical infrastructure, economy, and agriculture. Prominent computational and mathematical models have been unreliable due to the complexity of the spread of infections. Moreover, lack of data collection and reporting makes modelling attempts difficult and unreliable. Hence, we need to re-look at the situation with reliable data sources and innovative forecasting models. Deep learning models such as recurrent neural networks are well suited for modelling spatiotemporal sequences. In this paper, we apply recurrent neural networks such as long short term memory (LSTM), bidirectional LSTM, and encoder-decoder LSTM models for multi-step (short-term) COVID-19 infection forecasting. We select Indian states with COVID-19 hotpots and capture the first (2020) and second (2021) wave of infections and provide two months ahead forecast. Our model predicts that the likelihood of another wave of infections in October and November 2021 is low; however, the authorities need to be vigilant given emerging variants of the virus. The accuracy of the predictions motivate the application of the method in other countries and regions. Nevertheless, the challenges in modelling remain due to the reliability of data and difficulties in capturing factors such as population density, logistics, and social aspects such as culture and lifestyle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ctc发布了新的文献求助10
刚刚
Lovely_pan完成签到,获得积分20
刚刚
Melody发布了新的文献求助10
刚刚
研友_VZG7GZ应助Cc8采纳,获得30
1秒前
1秒前
xuqiansd完成签到,获得积分10
1秒前
1秒前
1秒前
司空大有完成签到,获得积分10
2秒前
2秒前
淡淡寒烟完成签到,获得积分20
2秒前
在水一方应助lianggao采纳,获得10
3秒前
林巧完成签到 ,获得积分10
3秒前
CipherSage应助clp采纳,获得10
3秒前
3秒前
葉12138完成签到,获得积分10
4秒前
晓晓晓完成签到,获得积分10
4秒前
4秒前
小孙孙完成签到,获得积分10
4秒前
5秒前
5秒前
淡淡寒烟发布了新的文献求助30
6秒前
12138完成签到,获得积分10
7秒前
7秒前
ljs完成签到,获得积分10
7秒前
000000完成签到,获得积分10
7秒前
7秒前
阿飞完成签到,获得积分10
8秒前
迷人的冰蓝完成签到,获得积分10
8秒前
fan完成签到,获得积分10
8秒前
甜211发布了新的文献求助10
9秒前
Ava应助晓晓晓采纳,获得10
9秒前
guajiguaji发布了新的文献求助10
9秒前
时尚初瑶完成签到,获得积分20
9秒前
小锦章完成签到,获得积分10
9秒前
zQiao完成签到,获得积分10
9秒前
科研通AI2S应助小孙孙采纳,获得10
10秒前
乐乐应助李雪采纳,获得10
10秒前
热心的帽子完成签到,获得积分20
11秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440824
求助须知:如何正确求助?哪些是违规求助? 3037241
关于积分的说明 8968067
捐赠科研通 2725790
什么是DOI,文献DOI怎么找? 1495072
科研通“疑难数据库(出版商)”最低求助积分说明 691074
邀请新用户注册赠送积分活动 687806