Comparison analysis of six purely satellite-derived global precipitation estimates

环境科学 降水 卫星 气候学 均方误差 全球降水量测量 气象学 大气科学 数学 统计 地理 地质学 工程类 航空航天工程
作者
Hanqing Chen,Bin Yong,Yan Shen,Jiufu Liu,Yang Hong,Jianyun Zhang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:581: 124376-124376 被引量:92
标识
DOI:10.1016/j.jhydrol.2019.124376
摘要

We executed a comprehensive evaluation and intercomparison between six purely satellite-derived precipitation estimates (i.e., IMERG-Late, IMERG-Early, GSMaP-NRT, GSMaP-MVK, TMPA-RT and PERSIANN-CCS) at global and regional scales for the period from February 2017 to January 2019. The results show that IMERG-Late exhibits the best performance among six evaluated products, while the worst performance was found in GSMaP-NRT and GSMaP-MVK. The root mean squared error (RMSE) has a power function to the logarithm of precipitation intensity in all six satellite products. On the basis of our findings, the RMSE of all products in rainfall events with intensity exceeding 32 mm/day (or 8 mm/h) accounts for beyond 30% of the corresponding precipitation intensity, which might result in a significant impact on the detectability and forecast of flash floods simulated by satellite precipitation. Additionally, both IMERG and GSMaP overestimate the proportions of light rainfall occurrences, and also display relatively larger errors in light precipitation (0.2–0.4 mm/h or 1–2 mm/day) with the RMSE values exceeding 0.5 mm (or 2 mm) at hourly (or daily) time scale. As for the error analysis, we decomposed the total bias of each product into hits, misses and false biases at hourly and 0.1° resolution over mainland China except for TMPA-RT. We found that the false bias is the dominated error sources for these five products in cold season over semi-humid areas despite that the hit bias accounts for a non-negligible proportion for GSMaP suite. The missed precipitation is the dominated error sources of PERSIANN-CCS both in two seasons over most of humid regions, and meanwhile is one of major error sources for other four products. We expect that the findings of this study not only provide some valuable feedbacks for algorithm developers to improve the GPM-based satellite precipitation retrievals, but also provide some guidance for data users across the world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助愤怒的曼荷采纳,获得10
刚刚
hikari发布了新的文献求助10
1秒前
爆米花应助聪明纸飞机采纳,获得10
2秒前
小二郎应助阿欧欧欧采纳,获得30
2秒前
guihai发布了新的文献求助10
2秒前
大方忆秋完成签到 ,获得积分10
2秒前
想美事发布了新的文献求助10
2秒前
大盘鸡完成签到,获得积分10
3秒前
3秒前
wgl200212完成签到,获得积分10
4秒前
4秒前
搜集达人应助S月小小采纳,获得10
4秒前
6秒前
6秒前
金鸡奖完成签到,获得积分20
8秒前
谈笑间发布了新的文献求助10
8秒前
9秒前
研友_Z1WkgL完成签到,获得积分10
9秒前
11秒前
hhh发布了新的文献求助10
11秒前
11秒前
白壹一完成签到 ,获得积分10
11秒前
11秒前
神勇的晟睿完成签到 ,获得积分10
11秒前
小二郎应助cong采纳,获得20
12秒前
PGZ完成签到,获得积分10
12秒前
所所应助St雪采纳,获得10
12秒前
搜集达人应助外向樱采纳,获得10
14秒前
Joey发布了新的文献求助10
14秒前
15秒前
想美事完成签到,获得积分10
15秒前
xiaoguoxiaoguo完成签到,获得积分10
15秒前
16秒前
无花果应助猪猪侠采纳,获得10
17秒前
17秒前
无辜的星月完成签到,获得积分10
17秒前
后知不觉发布了新的文献求助10
17秒前
18秒前
星辰大海应助哦耶采纳,获得10
22秒前
oo发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259688
求助须知:如何正确求助?哪些是违规求助? 4421251
关于积分的说明 13762275
捐赠科研通 4295121
什么是DOI,文献DOI怎么找? 2356733
邀请新用户注册赠送积分活动 1353120
关于科研通互助平台的介绍 1314279