已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simultaneous super‐resolution and contrast synthesis of routine clinical magnetic resonance images of the knee for improving automatic segmentation of joint cartilage: data from the Osteoarthritis Initiative

分割 骨关节炎 人工智能 磁共振成像 软骨 计算机科学 图像分辨率 膝关节 膝关节软骨 计算机视觉 图像分割 卷积神经网络 模式识别(心理学) 数据集 医学 关节软骨 放射科 解剖 替代医学 病理 外科
作者
Aleš Neubert,Pierrick Bourgeat,Jason Wood,Craig Engstrom,Shekhar S. Chandra,‪Stuart Crozier‬,Jürgen Fripp
出处
期刊:Medical Physics [Wiley]
卷期号:47 (10): 4939-4948 被引量:9
标识
DOI:10.1002/mp.14421
摘要

Purpose High resolution three‐dimensional (3D) magnetic resonance (MR) images are well suited for automated cartilage segmentation in the human knee joint. However, volumetric scans such as 3D Double‐Echo Steady‐State (DESS) images are not routinely acquired in clinical practice which limits opportunities for reliable cartilage segmentation using (fully) automated algorithms. In this work, a method for generating synthetic 3D MR (syn3D‐DESS) images with better contrast and higher spatial resolution from routine, low resolution, two‐dimensional (2D) Turbo‐Spin Echo (TSE) clinical knee scans is proposed. Methods A UNet convolutional neural network is employed for synthesizing enhanced artificial MR images suitable for automated knee cartilage segmentation. Training of the model was performed on a large, publically available dataset from the OAI, consisting of 578 MR examinations of knee joints from 102 healthy individuals and patients with knee osteoarthritis. Results The generated synthetic images have higher spatial resolution and better tissue contrast than the original 2D TSE, which allow high quality automated 3D segmentations of the cartilage. The proposed approach was evaluated on a separate set of MR images from 88 subjects with manual cartilage segmentations. It provided a significant improvement in automated segmentation of knee cartilages when using the syn3D‐DESS images compared to the original 2D TSE images. Conclusion The proposed method can successfully synthesize 3D DESS images from 2D TSE images to provide images suitable for automated cartilage segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴1江完成签到,获得积分10
1秒前
2秒前
6秒前
充电宝应助andrele采纳,获得10
6秒前
小蘑菇应助lc采纳,获得10
7秒前
英俊的铭应助wcwpl采纳,获得10
7秒前
8秒前
洋洋洋完成签到 ,获得积分10
8秒前
乐乐应助牛马采纳,获得10
9秒前
乐观的颦发布了新的文献求助10
9秒前
Lonry驳回了Lucas应助
9秒前
闪闪发光的珊珊完成签到,获得积分10
10秒前
gaogao发布了新的文献求助20
10秒前
11秒前
11秒前
今后应助tufuczy采纳,获得10
11秒前
12秒前
NexusExplorer应助binwu采纳,获得30
14秒前
科研通AI6应助zli采纳,获得10
14秒前
16秒前
荆玉豪完成签到 ,获得积分10
16秒前
Azuiaaa应助cc采纳,获得10
17秒前
17秒前
17秒前
gexzygg应助去月球数星星采纳,获得10
18秒前
爆米花应助去月球数星星采纳,获得10
18秒前
莉莉发布了新的文献求助10
18秒前
chengche发布了新的文献求助10
21秒前
祁尒发布了新的文献求助10
23秒前
牛马发布了新的文献求助10
23秒前
Radon完成签到,获得积分10
25秒前
senli2018发布了新的文献求助10
25秒前
徐志豪发布了新的文献求助10
26秒前
26秒前
干净寻冬完成签到,获得积分10
27秒前
zli发布了新的文献求助30
28秒前
Radon发布了新的文献求助10
29秒前
丘比特应助落花采纳,获得10
29秒前
彭于晏应助敏哇哇哇采纳,获得10
30秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554475
求助须知:如何正确求助?哪些是违规求助? 4639080
关于积分的说明 14655090
捐赠科研通 4580870
什么是DOI,文献DOI怎么找? 2512482
邀请新用户注册赠送积分活动 1487276
关于科研通互助平台的介绍 1458165