Simultaneous super‐resolution and contrast synthesis of routine clinical magnetic resonance images of the knee for improving automatic segmentation of joint cartilage: data from the Osteoarthritis Initiative

分割 骨关节炎 人工智能 磁共振成像 软骨 计算机科学 图像分辨率 膝关节 膝关节软骨 计算机视觉 图像分割 卷积神经网络 模式识别(心理学) 数据集 医学 关节软骨 放射科 解剖 替代医学 病理 外科
作者
Aleš Neubert,Pierrick Bourgeat,Jason Wood,Craig Engstrom,Shekhar S. Chandra,‪Stuart Crozier‬,Jürgen Fripp
出处
期刊:Medical Physics [Wiley]
卷期号:47 (10): 4939-4948 被引量:9
标识
DOI:10.1002/mp.14421
摘要

Purpose High resolution three‐dimensional (3D) magnetic resonance (MR) images are well suited for automated cartilage segmentation in the human knee joint. However, volumetric scans such as 3D Double‐Echo Steady‐State (DESS) images are not routinely acquired in clinical practice which limits opportunities for reliable cartilage segmentation using (fully) automated algorithms. In this work, a method for generating synthetic 3D MR (syn3D‐DESS) images with better contrast and higher spatial resolution from routine, low resolution, two‐dimensional (2D) Turbo‐Spin Echo (TSE) clinical knee scans is proposed. Methods A UNet convolutional neural network is employed for synthesizing enhanced artificial MR images suitable for automated knee cartilage segmentation. Training of the model was performed on a large, publically available dataset from the OAI, consisting of 578 MR examinations of knee joints from 102 healthy individuals and patients with knee osteoarthritis. Results The generated synthetic images have higher spatial resolution and better tissue contrast than the original 2D TSE, which allow high quality automated 3D segmentations of the cartilage. The proposed approach was evaluated on a separate set of MR images from 88 subjects with manual cartilage segmentations. It provided a significant improvement in automated segmentation of knee cartilages when using the syn3D‐DESS images compared to the original 2D TSE images. Conclusion The proposed method can successfully synthesize 3D DESS images from 2D TSE images to provide images suitable for automated cartilage segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
玖月发布了新的文献求助10
1秒前
林菲菲发布了新的文献求助10
1秒前
Lucas应助gaiaaxy采纳,获得10
2秒前
ceeray23应助yy采纳,获得30
3秒前
NICE完成签到,获得积分10
3秒前
只与你发布了新的文献求助10
3秒前
烟花应助Lartyrs采纳,获得10
3秒前
第一步完成签到 ,获得积分10
4秒前
4秒前
领导范儿应助某竖特别菜采纳,获得10
6秒前
6秒前
ceeray23应助Xuemin采纳,获得10
7秒前
庞桂妃发布了新的文献求助10
9秒前
10秒前
siqilinwillbephd完成签到,获得积分10
10秒前
Jasper应助林菲菲采纳,获得10
10秒前
10秒前
11秒前
姜少发布了新的文献求助30
11秒前
慕青应助zhang采纳,获得10
11秒前
只与你完成签到,获得积分10
11秒前
壮观的芮发布了新的文献求助10
12秒前
seven发布了新的文献求助10
13秒前
14秒前
123123完成签到 ,获得积分10
15秒前
wanci应助结实的寒烟采纳,获得30
15秒前
Tina发布了新的文献求助10
16秒前
酷酷友容完成签到,获得积分20
17秒前
所所应助玖月采纳,获得10
17秒前
18秒前
Metx完成签到 ,获得积分10
18秒前
鲳鱼密码发布了新的文献求助10
18秒前
w野完成签到,获得积分10
19秒前
19秒前
21秒前
六层楼发布了新的文献求助10
24秒前
tangyan完成签到,获得积分10
24秒前
壮观的芮完成签到,获得积分10
25秒前
Lartyrs发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589