亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Simultaneous super‐resolution and contrast synthesis of routine clinical magnetic resonance images of the knee for improving automatic segmentation of joint cartilage: data from the Osteoarthritis Initiative

分割 骨关节炎 人工智能 磁共振成像 软骨 计算机科学 图像分辨率 膝关节 膝关节软骨 计算机视觉 图像分割 卷积神经网络 模式识别(心理学) 数据集 医学 关节软骨 放射科 解剖 替代医学 病理 外科
作者
Aleš Neubert,Pierrick Bourgeat,Jason Wood,Craig Engstrom,Shekhar S. Chandra,‪Stuart Crozier‬,Jürgen Fripp
出处
期刊:Medical Physics [Wiley]
卷期号:47 (10): 4939-4948 被引量:9
标识
DOI:10.1002/mp.14421
摘要

Purpose High resolution three‐dimensional (3D) magnetic resonance (MR) images are well suited for automated cartilage segmentation in the human knee joint. However, volumetric scans such as 3D Double‐Echo Steady‐State (DESS) images are not routinely acquired in clinical practice which limits opportunities for reliable cartilage segmentation using (fully) automated algorithms. In this work, a method for generating synthetic 3D MR (syn3D‐DESS) images with better contrast and higher spatial resolution from routine, low resolution, two‐dimensional (2D) Turbo‐Spin Echo (TSE) clinical knee scans is proposed. Methods A UNet convolutional neural network is employed for synthesizing enhanced artificial MR images suitable for automated knee cartilage segmentation. Training of the model was performed on a large, publically available dataset from the OAI, consisting of 578 MR examinations of knee joints from 102 healthy individuals and patients with knee osteoarthritis. Results The generated synthetic images have higher spatial resolution and better tissue contrast than the original 2D TSE, which allow high quality automated 3D segmentations of the cartilage. The proposed approach was evaluated on a separate set of MR images from 88 subjects with manual cartilage segmentations. It provided a significant improvement in automated segmentation of knee cartilages when using the syn3D‐DESS images compared to the original 2D TSE images. Conclusion The proposed method can successfully synthesize 3D DESS images from 2D TSE images to provide images suitable for automated cartilage segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈同学完成签到 ,获得积分10
2秒前
lan发布了新的文献求助10
2秒前
chen完成签到 ,获得积分10
13秒前
sci2025opt完成签到 ,获得积分10
17秒前
siv完成签到,获得积分10
39秒前
科研通AI6应助懦弱的丹秋采纳,获得10
47秒前
科研兵发布了新的文献求助10
53秒前
天天快乐应助shee采纳,获得10
59秒前
搜集达人应助科研兵采纳,获得10
1分钟前
insomnia417完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
3分钟前
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
朴素易梦发布了新的文献求助30
3分钟前
3分钟前
3分钟前
4分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
聪明的云完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
朴素易梦完成签到,获得积分10
6分钟前
小马甲应助John采纳,获得10
7分钟前
kuoping完成签到,获得积分0
7分钟前
7分钟前
John完成签到,获得积分10
7分钟前
John发布了新的文献求助10
7分钟前
Ji完成签到,获得积分10
8分钟前
阔达白凡完成签到,获得积分10
8分钟前
桥西小河完成签到 ,获得积分10
8分钟前
TongKY完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827