Simultaneous super‐resolution and contrast synthesis of routine clinical magnetic resonance images of the knee for improving automatic segmentation of joint cartilage: data from the Osteoarthritis Initiative

分割 骨关节炎 人工智能 磁共振成像 软骨 计算机科学 图像分辨率 膝关节 膝关节软骨 计算机视觉 图像分割 卷积神经网络 模式识别(心理学) 数据集 医学 关节软骨 放射科 解剖 替代医学 外科 病理
作者
Aleš Neubert,Pierrick Bourgeat,Jason Wood,Craig Engstrom,Shekhar S. Chandra,‪Stuart Crozier‬,Jürgen Fripp
出处
期刊:Medical Physics [Wiley]
卷期号:47 (10): 4939-4948 被引量:9
标识
DOI:10.1002/mp.14421
摘要

Purpose High resolution three‐dimensional (3D) magnetic resonance (MR) images are well suited for automated cartilage segmentation in the human knee joint. However, volumetric scans such as 3D Double‐Echo Steady‐State (DESS) images are not routinely acquired in clinical practice which limits opportunities for reliable cartilage segmentation using (fully) automated algorithms. In this work, a method for generating synthetic 3D MR (syn3D‐DESS) images with better contrast and higher spatial resolution from routine, low resolution, two‐dimensional (2D) Turbo‐Spin Echo (TSE) clinical knee scans is proposed. Methods A UNet convolutional neural network is employed for synthesizing enhanced artificial MR images suitable for automated knee cartilage segmentation. Training of the model was performed on a large, publically available dataset from the OAI, consisting of 578 MR examinations of knee joints from 102 healthy individuals and patients with knee osteoarthritis. Results The generated synthetic images have higher spatial resolution and better tissue contrast than the original 2D TSE, which allow high quality automated 3D segmentations of the cartilage. The proposed approach was evaluated on a separate set of MR images from 88 subjects with manual cartilage segmentations. It provided a significant improvement in automated segmentation of knee cartilages when using the syn3D‐DESS images compared to the original 2D TSE images. Conclusion The proposed method can successfully synthesize 3D DESS images from 2D TSE images to provide images suitable for automated cartilage segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KaK完成签到,获得积分20
刚刚
summertny完成签到,获得积分10
2秒前
搜集达人应助唐唯一采纳,获得10
2秒前
3秒前
Esclever完成签到,获得积分10
4秒前
田様应助00采纳,获得10
4秒前
隐形曼青应助吉格斯采纳,获得10
4秒前
RONG完成签到,获得积分10
5秒前
5秒前
summertny发布了新的文献求助10
6秒前
默默犀牛发布了新的文献求助30
7秒前
彭佳丽完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
班马鸣发布了新的文献求助10
10秒前
顾矜应助知性的土豆采纳,获得10
11秒前
sun完成签到 ,获得积分10
12秒前
顺利巨人发布了新的文献求助10
14秒前
16秒前
16秒前
虚生花完成签到,获得积分10
17秒前
18秒前
19秒前
sally发布了新的文献求助10
20秒前
21秒前
21秒前
研友_n0WgDL发布了新的文献求助10
24秒前
yzx完成签到 ,获得积分10
25秒前
我是老大应助漠之梦采纳,获得10
25秒前
领导范儿应助koi采纳,获得10
26秒前
26秒前
26秒前
小蘑菇应助等乙天采纳,获得10
28秒前
暮雨初晴完成签到,获得积分10
30秒前
从容傲柏完成签到,获得积分10
32秒前
无奈妖妖完成签到,获得积分10
33秒前
33秒前
万能图书馆应助研友_n0WgDL采纳,获得10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536758
求助须知:如何正确求助?哪些是违规求助? 4624342
关于积分的说明 14591700
捐赠科研通 4564904
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480738
关于科研通互助平台的介绍 1451989