Simultaneous super‐resolution and contrast synthesis of routine clinical magnetic resonance images of the knee for improving automatic segmentation of joint cartilage: data from the Osteoarthritis Initiative

分割 骨关节炎 人工智能 磁共振成像 软骨 计算机科学 图像分辨率 膝关节 膝关节软骨 计算机视觉 图像分割 卷积神经网络 模式识别(心理学) 数据集 医学 关节软骨 放射科 解剖 替代医学 外科 病理
作者
Aleš Neubert,Pierrick Bourgeat,Jason Wood,Craig Engstrom,Shekhar S. Chandra,‪Stuart Crozier‬,Jürgen Fripp
出处
期刊:Medical Physics [Wiley]
卷期号:47 (10): 4939-4948 被引量:9
标识
DOI:10.1002/mp.14421
摘要

Purpose High resolution three‐dimensional (3D) magnetic resonance (MR) images are well suited for automated cartilage segmentation in the human knee joint. However, volumetric scans such as 3D Double‐Echo Steady‐State (DESS) images are not routinely acquired in clinical practice which limits opportunities for reliable cartilage segmentation using (fully) automated algorithms. In this work, a method for generating synthetic 3D MR (syn3D‐DESS) images with better contrast and higher spatial resolution from routine, low resolution, two‐dimensional (2D) Turbo‐Spin Echo (TSE) clinical knee scans is proposed. Methods A UNet convolutional neural network is employed for synthesizing enhanced artificial MR images suitable for automated knee cartilage segmentation. Training of the model was performed on a large, publically available dataset from the OAI, consisting of 578 MR examinations of knee joints from 102 healthy individuals and patients with knee osteoarthritis. Results The generated synthetic images have higher spatial resolution and better tissue contrast than the original 2D TSE, which allow high quality automated 3D segmentations of the cartilage. The proposed approach was evaluated on a separate set of MR images from 88 subjects with manual cartilage segmentations. It provided a significant improvement in automated segmentation of knee cartilages when using the syn3D‐DESS images compared to the original 2D TSE images. Conclusion The proposed method can successfully synthesize 3D DESS images from 2D TSE images to provide images suitable for automated cartilage segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wu完成签到 ,获得积分10
刚刚
duduguai完成签到,获得积分10
刚刚
ISLAND完成签到,获得积分10
1秒前
zoey完成签到,获得积分20
3秒前
火星上的酸奶完成签到,获得积分10
3秒前
通通发布了新的文献求助10
3秒前
xiaomaxia完成签到 ,获得积分10
3秒前
俏皮的老城完成签到 ,获得积分10
4秒前
zoey发布了新的文献求助10
5秒前
汉堡包应助Ronnie采纳,获得10
10秒前
10秒前
紧张的毛衣完成签到,获得积分10
13秒前
现代的访曼应助十米采纳,获得20
15秒前
烟花应助Cici采纳,获得10
15秒前
脑洞疼应助廉洁采纳,获得10
16秒前
有魅力的问儿完成签到,获得积分10
16秒前
16秒前
徐什么宝发布了新的文献求助10
17秒前
蜡笔完成签到,获得积分10
19秒前
陈严完成签到 ,获得积分10
20秒前
灵巧水绿应助积极的连虎采纳,获得10
20秒前
20秒前
21秒前
wang完成签到,获得积分10
21秒前
三颗石头发布了新的文献求助10
22秒前
NexusExplorer应助贪玩访文采纳,获得10
23秒前
YxxxF完成签到 ,获得积分10
24秒前
wang发布了新的文献求助10
25秒前
chen发布了新的文献求助10
26秒前
试尝胆大应助freedom313514采纳,获得20
27秒前
27秒前
28秒前
28秒前
mouset270发布了新的文献求助30
28秒前
29秒前
dddyl应助科研通管家采纳,获得10
29秒前
29秒前
Owen应助科研通管家采纳,获得10
29秒前
SciGPT应助科研通管家采纳,获得10
29秒前
CodeCraft应助科研通管家采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993