已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

How to evaluate machine translation: A review of automated and human metrics

计算机科学 排名(信息检索) 机器翻译 机器学习 人工智能 机器翻译评价 质量(理念) 注释 自然语言处理 集合(抽象数据类型) 数据挖掘 机器翻译软件可用性 哲学 认识论 基于实例的机器翻译 程序设计语言
作者
Eirini Chatzikoumi
出处
期刊:Natural Language Engineering [Cambridge University Press]
卷期号:26 (2): 137-161 被引量:62
标识
DOI:10.1017/s1351324919000469
摘要

Abstract This article presents the most up-to-date, influential automated, semiautomated and human metrics used to evaluate the quality of machine translation (MT) output and provides the necessary background for MT evaluation projects. Evaluation is, as repeatedly admitted, highly relevant for the improvement of MT. This article is divided into three parts: the first one is dedicated to automated metrics; the second, to human metrics; and the last, to the challenges posed by neural machine translation (NMT) regarding its evaluation. The first part includes reference translation–based metrics; confidence or quality estimation (QE) metrics, which are used as alternatives for quality assessment; and diagnostic evaluation based on linguistic checkpoints. Human evaluation metrics are classified according to the criterion of whether human judges directly express a so-called subjective evaluation judgment, such as ‘good’ or ‘better than’, or not, as is the case in error classification. The former methods are based on directly expressed judgment (DEJ); therefore, they are called ‘DEJ-based evaluation methods’, while the latter are called ‘non-DEJ-based evaluation methods’. In the DEJ-based evaluation section, tasks such as fluency and adequacy annotation, ranking and direct assessment (DA) are presented, whereas in the non-DEJ-based evaluation section, tasks such as error classification and postediting are detailed, with definitions and guidelines, thus rendering this article a useful guide for evaluation projects. Following the detailed presentation of the previously mentioned metrics, the specificities of NMT are set forth along with suggestions for its evaluation, according to the latest studies. As human translators are the most adequate judges of the quality of a translation, emphasis is placed on the human metrics seen from a translator-judge perspective to provide useful methodology tools for interdisciplinary research groups that evaluate MT systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
登登发布了新的文献求助10
1秒前
1秒前
山黛Liebe完成签到,获得积分10
1秒前
赘婿应助虚幻又莲采纳,获得10
2秒前
希望天下0贩的0应助lily88采纳,获得10
4秒前
4秒前
4秒前
5秒前
大龙哥886发布了新的文献求助10
5秒前
7秒前
8秒前
我想睡觉完成签到,获得积分10
11秒前
章鱼哥想毕业完成签到 ,获得积分10
13秒前
15966014069发布了新的文献求助10
14秒前
14秒前
寒冷书包完成签到,获得积分10
14秒前
14秒前
vxxfa完成签到 ,获得积分10
17秒前
陈ccc发布了新的文献求助10
18秒前
guard发布了新的文献求助30
19秒前
23秒前
舒伯特完成签到 ,获得积分10
23秒前
Akim应助Dr大壮采纳,获得10
23秒前
15966014069完成签到,获得积分20
24秒前
25秒前
25秒前
25秒前
25秒前
25秒前
25秒前
25秒前
26秒前
Ava应助易吴鱼采纳,获得10
28秒前
金角小王发布了新的文献求助10
28秒前
金角小王发布了新的文献求助10
29秒前
金角小王发布了新的文献求助10
29秒前
金角小王发布了新的文献求助10
29秒前
金角小王发布了新的文献求助30
29秒前
金角小王发布了新的文献求助10
29秒前
金角小王发布了新的文献求助30
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801512
关于积分的说明 7845255
捐赠科研通 2459095
什么是DOI,文献DOI怎么找? 1308964
科研通“疑难数据库(出版商)”最低求助积分说明 628618
版权声明 601727