已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Radiomics nomogram for predicting bone metastasis in newly diagnosed prostate cancer patients

列线图 医学 无线电技术 逻辑回归 队列 前列腺癌 骨转移 放射科 Lasso(编程语言) 肿瘤科 内科学 癌症 计算机科学 万维网
作者
Wenjie Zhang,Ning Mao,Yong Sheng Wang,Haizhu Xie,Shaofeng Duan,Xuexi Zhang,Wang Bin
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:128: 109020-109020 被引量:34
标识
DOI:10.1016/j.ejrad.2020.109020
摘要

Purpose To establish and validate a radiomics nomogram for predicting bone metastasis (BM) in patients with newly diagnosed prostate cancer (PCa). Method One-hundred and sixteen patients (training cohort: n = 81; validation cohort: n = 35) who underwent prostate MR imaging and confirmed by pathology with newly diagnosed PCa from January 2014 to January 2019 were enrolled. Radiomic features were extracted from diffusion-weighted, axial T2-weighted fat suppression, and dynamic contrast-enhanced T1-weighted MRI of each patient. Dimension reduction, feature selection, and radiomics feature construction were performed using the least absolute shrinkage and selection operator (LASSO) regression. Combined with independent clinical risk factors, a multivariate logistic regression model was used to establish a radiomics nomogram. Nomogram calibration and discrimination were evaluated in training cohort and verified in the validation cohort. Finally, the clinical usefulness of the nomogram was estimated through decision curve analysis (DCA). Results Radiomics signature consisting of 12 selected features was significantly correlated with bone status (P < 0.001 for both training and validation sets). The radiomics nomogram combined a radiomics signature from multiparametric MR images with independent clinic risk factors. The model showed good discrimination and calibration in the training cohort (AUC 0.93, 95% CI, 0.86 to 0.99) and the validation cohort (AUC 0.92, 95% CI, 0.84 to 0.99). DCA also demonstrated the clinical use of the radiomics model. Conclusion The radiomics nomogram, which incorporates the multiparametric MRI-based radiomics signature and clinical risk factors, can be conveniently used to promote individualized prediction of BM in patients with newly diagnosed PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
付艳完成签到,获得积分10
刚刚
1秒前
2秒前
碧蓝觅山完成签到,获得积分10
2秒前
zbx发布了新的文献求助10
3秒前
cocolu应助CC采纳,获得10
4秒前
maho完成签到,获得积分10
5秒前
三木大叔发布了新的文献求助10
7秒前
北风发布了新的文献求助10
8秒前
10秒前
STUBLE完成签到,获得积分10
10秒前
Liuzihao完成签到 ,获得积分10
10秒前
13秒前
在水一方应助Jiayou Zhang采纳,获得10
14秒前
XIN发布了新的文献求助10
15秒前
思源应助三木大叔采纳,获得10
16秒前
16秒前
16秒前
111发布了新的文献求助10
16秒前
HIMAWALI关注了科研通微信公众号
18秒前
研友_VZG7GZ应助欢喜雅蕊采纳,获得10
20秒前
Snow发布了新的文献求助10
21秒前
cocolu应助CC采纳,获得10
21秒前
酷波er应助zbx采纳,获得10
22秒前
24秒前
26秒前
26秒前
28秒前
Jiayou Zhang发布了新的文献求助10
31秒前
31秒前
mjf111应助XIN采纳,获得10
34秒前
HIMAWALI发布了新的文献求助10
34秒前
欢喜雅蕊发布了新的文献求助10
35秒前
37秒前
41秒前
欢喜雅蕊完成签到,获得积分10
42秒前
43秒前
华仔应助YAN77采纳,获得30
43秒前
xiaoKai完成签到 ,获得积分10
43秒前
领导范儿应助cyt9999采纳,获得10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307142
求助须知:如何正确求助?哪些是违规求助? 2940917
关于积分的说明 8499435
捐赠科研通 2615110
什么是DOI,文献DOI怎么找? 1428672
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648355