薄壁组织
木质部
细胞壁
形成层
生物
解剖
植物
生物物理学
作者
Lijuan Yin,Xiaomei Jiang,Lingyu Ma,Shoujia Liu,Tuo He,Lichao Jiao,Yafang Yin,Lihong Yao,Juan Guo
标识
DOI:10.1016/j.jplph.2022.153830
摘要
Pits in ray parenchyma cells are important to understand the functional anatomy of the ray parenchyma network in the xylem but have been less studied. Herein, pits in two types of ray parenchyma cells, contact cells and isolation cells, across different developmental stages were qualitatively studied using 48-year-old Populus tomentosa trees. The timing of differentiation and death was determined by histochemical staining and polarized light microscopy. The dimension, shape and density of pits as well as cell wall thickness were measured using SEM and optical microscopy images of semi-thin radial sections and macerated ray parenchyma cells, and analyzed by multi-factor analyses of variance. Results showed that secondary wall thickening and lignification of contact cells begun near the cambium, contrarily those of isolation cells have started until the transition zone. But even in the sapwood, contact cell walls were still much thinner than isolation cell walls. Moreover, district anatomical adaptions of pits during the xylem differentiation were present between horizontal walls and tangential walls, between contact cells and isolation cells. Ray pits were simple to slightly bordered, whereas sieve-like pits were only shown on tangential walls of isolation cells. Pit density of horizontal walls was similar between contact cells and isolation cells, nevertheless greater pits were present on tangential walls, especially for isolation cells. In addition, pits of ray parenchyma cells in the heartwood were smaller and more bordered than those in the sapwood, particularly on the horizontal walls. Moreover, isolation cells had pits with the smaller dimensions, greater pits on the tangential walls, more bordered pits on horizontal walls, as well as longer and narrower cell morphology with much thicker cell walls than contact cells. To a certain extent, all these anatomical adaptations were developed to ensure distinct functions of the two types of ray parenchyma cells in the xylem and finally to support tree growth in demand.
科研通智能强力驱动
Strongly Powered by AbleSci AI