For \begin{document}$ N\geq 3 $\end{document} and \begin{document}$ 1<p<\frac{N+2}{N-2} $\end{document}, we consider the following semilinear elliptic equation
Here \begin{document}$ a_{1}, \theta>0 $\end{document}, \begin{document}$ a_{2}\in \mathbb{R} $\end{document} and \begin{document}$ \alpha>2(\min\left\{1, (p-1)\right\})^{-1} $\end{document} are some constants. By the finite dimensional Lyapunov-Schmidt reduction method, we show that \begin{document}$ (1) $\end{document} has infinitely many non-radial positive solutions.