材料科学
塞贝克系数
热电效应
电阻率和电导率
热导率
热电材料
佩多:嘘
多孔性
导电体
电导率
功勋
复合材料
比表面积
化学工程
光电子学
聚合物
电气工程
有机化学
热力学
物理化学
工程类
催化作用
物理
化学
作者
Joseph F. Olorunyomi,Brendan Dyett,Billy J. Murdoch,Al Jumlat Ahmed,Gary Rosengarten,Rachel A. Caruso,Cara M. Doherty,Xavier Mulet
标识
DOI:10.1002/adfm.202403644
摘要
Abstract Metal–organic frameworks (MOFs) exhibit large surface areas and low thermal conductivity, making them promising for thermoelectric generation. However, their limited electrical conductivity poses a significant hurdle to be practically useful. Traditionally, enhancing the electrical conductivity of MOFs typically comes at the cost of reducing surface area, thereby increasing thermal conductivity. This study introduces an approach to simultaneously boost the electrical conductivity and porosity of a MOF‐based material while maintaining remarkably low thermal conductivity. The electrically conductive poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) is deployed to nucleate the growth of Cu 3 (BTC) 2 (or simply CuBTC, where BTC = benzene‐1,3,5‐tricarboxylic acid), resulting in the synthesis of composites labeled CPP‐ y (where y denotes wt% PEDOT:PSS). Predictably, the CPP‐ y composites are more electrically conductive than pure CuBTC, achieving an electrical conductivity exceeding 1.40 S cm −1 at room temperature. Furthermore, the CPP‐ y composites exhibit consistently high Brunauer–Emmett–Teller (BET) surface areas of ≈1600 m 2 g −1 , comparable to pristine CuBTC, while maintaining thermal conductivities below 0.04 W m −1 K −1 at room temperature. With a high Seebeck coefficient in the range 180–373 µV K −1 , CPP‐15 and CPP‐23 demonstrate a figure‐of‐merit ( zT ) of 0.25 and 0.11, respectively, at 285 K, marking a substantial achievement for MOF‐based materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI