LMACL: Improving Graph Collaborative Filtering with Learnable Model Augmentation Contrastive Learning

计算机科学 图形 协同过滤 人工智能 推荐系统 机器学习 自然语言处理 理论计算机科学
作者
Xinru Liu,Yongjing Hao,Lei Zhao,Guanfeng Liu,Victor S. Sheng,Pengpeng Zhao
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (7): 1-24 被引量:5
标识
DOI:10.1145/3657302
摘要

Graph collaborative filtering (GCF) has achieved exciting recommendation performance with its ability to aggregate high-order graph structure information. Recently, contrastive learning (CL) has been incorporated into GCF to alleviate data sparsity and noise issues. However, most of the existing methods employ random or manual augmentation to produce contrastive views that may destroy the original topology and amplify the noisy effects. We argue that such augmentation is insufficient to produce the optimal contrastive view, leading to suboptimal recommendation results. In this article, we proposed a L earnable M odel A ugmentation C ontrastive L earning (LMACL) framework for recommendation, which effectively combines graph-level and node-level collaborative relations to enhance the expressiveness of collaborative filtering (CF) paradigm. Specifically, we first use the graph convolution network (GCN) as a backbone encoder to incorporate multi-hop neighbors into graph-level original node representations by leveraging the high-order connectivity in user-item interaction graphs. At the same time, we treat the multi-head graph attention network (GAT) as an augmentation view generator to adaptively generate high-quality node-level augmented views. Finally, joint learning endows the end-to-end training fashion. In this case, the mutual supervision and collaborative cooperation of GCN and GAT achieves learnable model augmentation. Extensive experiments on several benchmark datasets demonstrate that LMACL provides a significant improvement over the strongest baseline in terms of Recall and NDCG by 2.5%–3.8% and 1.6%–4.0%, respectively. Our model implementation code is available at https://github.com/LiuHsinx/LMACL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
子车茗应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
刚刚
晶晶完成签到,获得积分10
刚刚
QZZ完成签到,获得积分10
刚刚
yingying完成签到,获得积分10
1秒前
1秒前
2秒前
丁老三完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
动听的书翠完成签到,获得积分10
3秒前
666发布了新的文献求助10
5秒前
娅娅发布了新的文献求助10
6秒前
yingying发布了新的文献求助10
6秒前
pphu发布了新的文献求助30
7秒前
美满的金连完成签到 ,获得积分10
7秒前
kuku完成签到,获得积分10
7秒前
Lv完成签到,获得积分10
7秒前
阿飞完成签到,获得积分10
7秒前
nino发布了新的文献求助10
7秒前
8秒前
毛头侠发布了新的文献求助10
9秒前
pluto应助lan采纳,获得50
9秒前
整齐芷文完成签到,获得积分10
10秒前
好奇的书蛋完成签到,获得积分10
11秒前
jackhlj完成签到,获得积分10
12秒前
Sherry完成签到 ,获得积分10
12秒前
super chan完成签到,获得积分20
12秒前
可爱丸子完成签到,获得积分10
13秒前
hyf567完成签到,获得积分10
13秒前
多边形完成签到 ,获得积分10
14秒前
14秒前
天天快乐应助Xiaoyuan采纳,获得10
14秒前
李健的小迷弟应助yingying采纳,获得10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703