作者
Bing Liu,Chengqiang Wang,Ruyuan Liu,Weilai Xiang,Chang Yang,Di Li
摘要
This study aims to explore the therapeutic effect and possible mechanisms of icariin in schizophrenia. SD rats were divided into five groups, a control group, a MK801-induced schizophrenia model group, and three icariin treatment groups, with twelve rats in each group. Morris water maze and open field were used to observe the spatial learning and memory ability of rats. Compared with the control group, rats in the MK801-induced model group showed an increase in stereotypic behavior score, distance of spontaneous activities, escape latency, malondialdehyde (MDA) content, and IL-6, IL-1β, TNF-α expression, but a decrease in platform crossing times and superoxide dismutase (SOD) activity (P < 0.05). Furthermore, all the above changes of the model group were reversed after icariin treatment in a dose-dependent manner (P < 0.05). Network pharmacology found that icariin can exert anti-schizophrenic effects through some signaling pathways, such as relaxin, estrogen, and TNF signaling pathways. MAPK1, MAPK3, FOS, RELA, TNF, and JUN were the key targets of icariin on schizophrenia, and their expression was detected in animal models, which was consistent with the predicted results of network pharmacology. Icariin treatment may improve the spatial learning and memory ability of schizophrenic rats through TNF signaling pathway.