Towards Continual Adaptation in Industrial Anomaly Detection

计算机科学 灵活性(工程) 异常检测 水准点(测量) 遗忘 适应(眼睛) 任务(项目管理) 计算机辅助设计 人工智能 特征(语言学) 机器学习 集合(抽象数据类型) 特征工程 领域(数学) 可视化 数据挖掘 深度学习 工程类 系统工程 哲学 物理 光学 大地测量学 程序设计语言 工程制图 纯数学 地理 统计 语言学 数学
作者
Wujin Li,Jiawei Zhan,Jinbao Wang,Bizhong Xia,Bin-Bin Gao,Jun Li,Chengjie Wang,Feng Zheng
标识
DOI:10.1145/3503161.3548232
摘要

Anomaly detection (AD) has gained widespread attention due to its ability to identify defects in industrial scenarios using only normal samples. Although traditional AD methods achieved acceptable performance, they mainly focus on the current set of examples solely, leading to catastrophic forgetting of previously learned tasks when trained on a new one. Due to the limitation of flexibility and the requirements of realistic industrial scenarios, it is urgent to enhance the ability of continual adaptation of AD models. Therefore, this paper proposes a unified framework by incorporating continual learning (CL) to achieve our newly designed task of continual anomaly detection (CAD). Note that, we observe that data augmentation strategy can make AD methods well adapted to supervised CL (SCL) via constructing anomaly samples. Based on this, we hence propose a novel method named Distribution of Normal Embeddings (DNE), which utilizes the feature distribution of normal training samples from past tasks. It not only effectively alleviates catastrophic forgetting in CAD but also can be integrated with SCL methods to further improve their performance. Extensive experiments and visualization results on the popular benchmark dataset MVTec AD, have demonstrated advanced performance and the excellent continual adaption ability of our proposed method compared to other AD methods. To the best of our knowledge, we are the first to introduce and tackle the task of CAD. We believe that the proposed task and benchmark will be beneficial to the field of AD. Our code is available in thesupplementary material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小菜完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
tony发布了新的文献求助10
4秒前
所所应助Man采纳,获得10
5秒前
FIN应助诺之采纳,获得10
7秒前
周周完成签到,获得积分10
7秒前
8秒前
着急的湘完成签到,获得积分10
9秒前
9秒前
安迪宝刚完成签到 ,获得积分10
11秒前
qqw完成签到,获得积分10
12秒前
13秒前
英姑应助抗体药物偶联采纳,获得10
13秒前
在水一方应助缓慢的灵枫采纳,获得10
14秒前
搜集达人应助Parsec采纳,获得10
14秒前
领导范儿应助可耐的靖琪采纳,获得10
14秒前
烟花应助可耐的靖琪采纳,获得10
14秒前
梁三岁发布了新的文献求助10
14秒前
爆米花应助Jeffery426采纳,获得10
15秒前
lit完成签到,获得积分10
16秒前
充电宝应助zzzy采纳,获得10
16秒前
斯文败类应助呆萌不正采纳,获得10
16秒前
16秒前
16秒前
18秒前
19秒前
M2106发布了新的文献求助10
19秒前
twk123完成签到,获得积分10
19秒前
谭彬昕发布了新的文献求助10
20秒前
crillzlol完成签到,获得积分10
20秒前
ahmin发布了新的文献求助30
21秒前
hengyu应助科研小奶狗采纳,获得10
21秒前
素衣发布了新的文献求助10
21秒前
爆米花应助丰富夜安采纳,获得10
22秒前
墨上筠发布了新的文献求助10
23秒前
24秒前
27秒前
yuki完成签到,获得积分10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454350
求助须知:如何正确求助?哪些是违规求助? 3049590
关于积分的说明 9018110
捐赠科研通 2738270
什么是DOI,文献DOI怎么找? 1501951
科研通“疑难数据库(出版商)”最低求助积分说明 694307
邀请新用户注册赠送积分活动 692962