A new Takagi–Sugeno–Kang model for time series forecasting

可解释性 计算机科学 系列(地层学) 水准点(测量) 时间序列 模糊逻辑 模糊规则 数据挖掘 推论 人工智能 模糊控制系统 机器学习 古生物学 生物 大地测量学 地理
作者
Kaike Sa Teles Rocha Alves,Caian Dutra de Jesus,Eduardo Pestana de Aguiar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108155-108155 被引量:2
标识
DOI:10.1016/j.engappai.2024.108155
摘要

A fuzzy inference system consists of a machine learning concept that combines accuracy and interpretability. They are divided into two main groups: Mamdani and Takagi–Sugeno-Kang. While Mamdani models favor interpretability, Takagi–Sugeno-Kang models provide more accurate results because of their ability to approximate a nonlinear system through a collection of linear subsystems. The evolving Takagi Sugeno model inspired a new class of Takagi–Sugeno-Kang models classified as an evolving fuzzy system, which can update their structure and functionality to adapt themselves to changes in the data. However, these models may provide several rules that reduce the interpretability. Furthermore, as they usually present many hyper-parameters, it can be challenging to obtain results that satisfy specific requirements in terms of the accuracy-interpretability trade-off. To overcome such shortcomings, this paper introduces a new model in which the only hyper-parameter is the maximum number of rules. Consequently, the user can define the number of rules considering the accuracy-interpretability trade-off. The introduced models are evaluated using benchmark time series, three well-known financial series, S&P 500, NASDAQ, and TAIEX, and renewable energy datasets. The results are compared with other state-of-the-art machine learning models, such as classical models and some rule-based evolving Fuzzy Systems. The results are evaluated regarding error metrics and the number of final rules. The proposed model obtained similar or equal performance in the simulations to the compared models with increased interpretability. The code of the proposed model is available at https://github.com/kaikerochaalves/NTSK.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌幼晴完成签到,获得积分10
刚刚
打打应助lululala采纳,获得10
刚刚
1秒前
jessie完成签到,获得积分10
1秒前
明灯三千完成签到,获得积分10
2秒前
meme完成签到,获得积分10
2秒前
denny发布了新的文献求助10
3秒前
3秒前
Akjan完成签到,获得积分10
4秒前
唔呜無完成签到 ,获得积分10
4秒前
李健应助懦弱的难敌采纳,获得10
4秒前
ice完成签到 ,获得积分10
5秒前
jf完成签到 ,获得积分10
5秒前
5秒前
果汁豆浆完成签到,获得积分10
6秒前
7秒前
白兰鸽完成签到,获得积分10
7秒前
沉静冬易完成签到,获得积分10
7秒前
8秒前
PPSlu完成签到,获得积分10
8秒前
小张完成签到,获得积分10
8秒前
就晚安喽完成签到 ,获得积分10
10秒前
Akim应助Lion采纳,获得30
10秒前
lyn发布了新的文献求助10
10秒前
温柔灯泡完成签到,获得积分10
10秒前
阿辉发布了新的文献求助10
11秒前
月亮快打烊吖完成签到 ,获得积分10
12秒前
victhr完成签到,获得积分10
12秒前
12秒前
xiaobao完成签到,获得积分10
12秒前
Hey完成签到 ,获得积分10
13秒前
独立卫生间完成签到,获得积分10
13秒前
Lucas应助neo采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
南山无梅落完成签到,获得积分10
15秒前
lululala完成签到,获得积分10
16秒前
健壮的涑完成签到 ,获得积分10
17秒前
17秒前
17秒前
F123456完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008920
求助须知:如何正确求助?哪些是违规求助? 3548597
关于积分的说明 11299259
捐赠科研通 3283208
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886005
科研通“疑难数据库(出版商)”最低求助积分说明 811259