亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new Takagi–Sugeno–Kang model for time series forecasting

可解释性 计算机科学 系列(地层学) 水准点(测量) 时间序列 模糊逻辑 模糊规则 数据挖掘 推论 人工智能 模糊控制系统 机器学习 古生物学 生物 大地测量学 地理
作者
Kaike Sa Teles Rocha Alves,Caian Dutra de Jesus,Eduardo Pestana de Aguiar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108155-108155 被引量:2
标识
DOI:10.1016/j.engappai.2024.108155
摘要

A fuzzy inference system consists of a machine learning concept that combines accuracy and interpretability. They are divided into two main groups: Mamdani and Takagi–Sugeno-Kang. While Mamdani models favor interpretability, Takagi–Sugeno-Kang models provide more accurate results because of their ability to approximate a nonlinear system through a collection of linear subsystems. The evolving Takagi Sugeno model inspired a new class of Takagi–Sugeno-Kang models classified as an evolving fuzzy system, which can update their structure and functionality to adapt themselves to changes in the data. However, these models may provide several rules that reduce the interpretability. Furthermore, as they usually present many hyper-parameters, it can be challenging to obtain results that satisfy specific requirements in terms of the accuracy-interpretability trade-off. To overcome such shortcomings, this paper introduces a new model in which the only hyper-parameter is the maximum number of rules. Consequently, the user can define the number of rules considering the accuracy-interpretability trade-off. The introduced models are evaluated using benchmark time series, three well-known financial series, S&P 500, NASDAQ, and TAIEX, and renewable energy datasets. The results are compared with other state-of-the-art machine learning models, such as classical models and some rule-based evolving Fuzzy Systems. The results are evaluated regarding error metrics and the number of final rules. The proposed model obtained similar or equal performance in the simulations to the compared models with increased interpretability. The code of the proposed model is available at https://github.com/kaikerochaalves/NTSK.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
124332发布了新的文献求助10
7秒前
龙行天下完成签到 ,获得积分20
7秒前
8秒前
Chamsel完成签到,获得积分10
9秒前
10秒前
陈道哥完成签到 ,获得积分10
11秒前
龙行天下发布了新的文献求助10
16秒前
小马甲应助Nacy采纳,获得10
16秒前
科研通AI2S应助124332采纳,获得150
18秒前
20秒前
27秒前
28秒前
热寂灬完成签到 ,获得积分10
29秒前
Nacy发布了新的文献求助10
30秒前
ni发布了新的文献求助10
31秒前
楠楠2001完成签到 ,获得积分10
33秒前
歌者无罪发布了新的文献求助10
34秒前
37秒前
李健应助歌者无罪采纳,获得10
38秒前
Tian发布了新的文献求助10
44秒前
852应助科研通管家采纳,获得10
47秒前
星辰大海应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得30
47秒前
敏感的大白菜真实的钥匙完成签到,获得积分10
50秒前
1分钟前
tgytc完成签到 ,获得积分10
1分钟前
IfItheonlyone完成签到 ,获得积分10
1分钟前
1分钟前
Swear完成签到 ,获得积分10
1分钟前
1分钟前
淡淡妙竹完成签到 ,获得积分10
1分钟前
kiwi发布了新的文献求助10
1分钟前
豆乳米麻薯完成签到,获得积分10
1分钟前
科研通AI2S应助kiwi采纳,获得30
1分钟前
JamesPei应助木木一心采纳,获得10
1分钟前
脑洞疼应助Nacy采纳,获得10
2分钟前
霸气安筠发布了新的文献求助10
2分钟前
魏白晴完成签到,获得积分10
2分钟前
Parotodus完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265467
求助须知:如何正确求助?哪些是违规求助? 2905482
关于积分的说明 8333920
捐赠科研通 2575775
什么是DOI,文献DOI怎么找? 1400130
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633525