亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new Takagi–Sugeno–Kang model for time series forecasting

可解释性 计算机科学 系列(地层学) 水准点(测量) 时间序列 模糊逻辑 模糊规则 数据挖掘 推论 人工智能 模糊控制系统 机器学习 大地测量学 生物 古生物学 地理
作者
Kaike Sa Teles Rocha Alves,Caian Dutra de Jesus,Eduardo Pestana de Aguiar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108155-108155 被引量:2
标识
DOI:10.1016/j.engappai.2024.108155
摘要

A fuzzy inference system consists of a machine learning concept that combines accuracy and interpretability. They are divided into two main groups: Mamdani and Takagi–Sugeno-Kang. While Mamdani models favor interpretability, Takagi–Sugeno-Kang models provide more accurate results because of their ability to approximate a nonlinear system through a collection of linear subsystems. The evolving Takagi Sugeno model inspired a new class of Takagi–Sugeno-Kang models classified as an evolving fuzzy system, which can update their structure and functionality to adapt themselves to changes in the data. However, these models may provide several rules that reduce the interpretability. Furthermore, as they usually present many hyper-parameters, it can be challenging to obtain results that satisfy specific requirements in terms of the accuracy-interpretability trade-off. To overcome such shortcomings, this paper introduces a new model in which the only hyper-parameter is the maximum number of rules. Consequently, the user can define the number of rules considering the accuracy-interpretability trade-off. The introduced models are evaluated using benchmark time series, three well-known financial series, S&P 500, NASDAQ, and TAIEX, and renewable energy datasets. The results are compared with other state-of-the-art machine learning models, such as classical models and some rule-based evolving Fuzzy Systems. The results are evaluated regarding error metrics and the number of final rules. The proposed model obtained similar or equal performance in the simulations to the compared models with increased interpretability. The code of the proposed model is available at https://github.com/kaikerochaalves/NTSK.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老石完成签到 ,获得积分10
46秒前
ln完成签到 ,获得积分10
51秒前
55秒前
1分钟前
1分钟前
wanli发布了新的文献求助10
1分钟前
CRUSADER发布了新的文献求助100
1分钟前
HongqiZhang完成签到 ,获得积分0
1分钟前
CRUSADER完成签到,获得积分10
1分钟前
2分钟前
2分钟前
充电宝应助wanli采纳,获得10
3分钟前
3分钟前
桐桐应助jarrykim采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
John完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
jarrykim发布了新的文献求助10
4分钟前
大个应助啊呆哦采纳,获得10
5分钟前
5分钟前
啊呆哦完成签到,获得积分10
5分钟前
在水一方应助sidneyyang采纳,获得10
5分钟前
啊呆哦发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
吴南宛发布了新的文献求助10
6分钟前
sidneyyang完成签到,获得积分10
6分钟前
211JZH完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889480
求助须知:如何正确求助?哪些是违规求助? 4173477
关于积分的说明 12952093
捐赠科研通 3934926
什么是DOI,文献DOI怎么找? 2159102
邀请新用户注册赠送积分活动 1177454
关于科研通互助平台的介绍 1082281