Based on GIS technology and data-driven epidemic risk assessment methodology

地理编码 地理空间分析 地理信息系统 风险评估 地理 保护 分布(数学) 公共卫生 空间分析 计算机科学 环境卫生 数据挖掘 风险分析(工程) 地图学 业务 计算机安全 医学 遥感 数学 数学分析 护理部
作者
Changhao Cao,Hao Wang,Ma Yao,Xiaokang Ma
标识
DOI:10.1117/12.3020774
摘要

Assessing the risk of epidemics is crucial for safeguarding public health. Current research on epidemic risk assessment mostly relies on administrative divisions, which fail to capture the spatial differences in risk within these divisions. Taking Shanghai as a case study, this research employs geocoding techniques to spatialize the distribution of cases within administrative regions. It combines this information with geospatial big data that exhibits a strong correlation with population exposure rates as risk factors. Using GIS technology, the data is spatialized, and a relationship between risk factors and the distribution of new cases is established through geographic detectors and geographically weighted regression models. This approach enables the assessment of epidemic infection risks in different regions within administrative divisions based on the spatiotemporal variation of case distribution. The results demonstrate that the assessment method developed in this study effectively reflects the infection risks in different areas within administrative divisions. The risk index generated by the model exhibits a strong Spearman correlation coefficient (p = 0.869, p < 0.001) and a high coefficient of determination (R2 = 0.938, p < 0.001) when compared to the actual distribution of new cases. This confirms the accuracy of assessing infection risks across different spatial areas. The methodology proposed in this study can be applied for epidemic risk assessment during public health emergencies and assist in formulating effective prevention and control policies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助无限紫槐采纳,获得10
刚刚
1秒前
1秒前
一颗橙子完成签到,获得积分10
1秒前
小高同学发布了新的文献求助10
1秒前
隐形熊猫完成签到,获得积分20
2秒前
3秒前
222完成签到,获得积分10
3秒前
冯家乐应助zhuxingxing采纳,获得50
3秒前
Shark完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
6秒前
Azhou完成签到,获得积分10
7秒前
8秒前
隐形熊猫发布了新的文献求助10
8秒前
李洪卓发布了新的文献求助10
8秒前
柴郡鹿完成签到,获得积分10
8秒前
kkkk发布了新的文献求助10
10秒前
科研通AI2S应助小高同学采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得50
11秒前
Jasper应助科研通管家采纳,获得10
12秒前
J_应助科研通管家采纳,获得30
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
瘦瘦乌龟完成签到 ,获得积分10
14秒前
bbdd2334发布了新的文献求助10
15秒前
16秒前
俭朴一笑完成签到,获得积分10
17秒前
Shark关注了科研通微信公众号
18秒前
20秒前
23秒前
海茵发布了新的文献求助30
26秒前
三寒鸦完成签到,获得积分10
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247717
求助须知:如何正确求助?哪些是违规求助? 2890987
关于积分的说明 8265743
捐赠科研通 2559230
什么是DOI,文献DOI怎么找? 1388048
科研通“疑难数据库(出版商)”最低求助积分说明 650670
邀请新用户注册赠送积分活动 627571