Hybrid UNet transformer architecture for ischemic stoke segmentation with MRI and CT datasets

分割 计算机科学 人工智能 豪斯多夫距离 深度学习 体素 Sørensen–骰子系数 模式识别(心理学) 掷骰子 图像分割 数学 几何学
作者
Wei Kwek Soh,Jagath C. Rajapakse
出处
期刊:Frontiers in Neuroscience [Frontiers Media]
卷期号:17 被引量:4
标识
DOI:10.3389/fnins.2023.1298514
摘要

A hybrid UNet and Transformer (HUT) network is introduced to combine the merits of the UNet and Transformer architectures, improving brain lesion segmentation from MRI and CT scans. The HUT overcomes the limitations of conventional approaches by utilizing two parallel stages: one based on UNet and the other on Transformers. The Transformer-based stage captures global dependencies and long-range correlations. It uses intermediate feature vectors from the UNet decoder and improves segmentation accuracy by enhancing the attention and relationship modeling between voxel patches derived from the 3D brain volumes. In addition, HUT incorporates self-supervised learning on the transformer network. This allows the transformer network to learn by maintaining consistency between the classification layers of the different resolutions of patches and augmentations. There is an improvement in the rate of convergence of the training and the overall capability of segmentation. Experimental results on benchmark datasets, including ATLAS and ISLES2018, demonstrate HUT's advantage over the state-of-the-art methods. HUT achieves higher Dice scores and reduced Hausdorff Distance scores in single-modality and multi-modality lesion segmentation. HUT outperforms the state-the-art network SPiN in the single-modality MRI segmentation on Anatomical Tracings of lesion After Stroke (ATLAS) dataset by 4.84% of Dice score and a large margin of 40.7% in the Hausdorff Distance score. HUT also performed well on CT perfusion brain scans in the Ischemic Stroke Lesion Segmentation (ISLES2018) dataset and demonstrated an improvement over the recent state-of-the-art network USSLNet by 3.3% in the Dice score and 12.5% in the Hausdorff Distance score. With the analysis of both single and multi-modalities datasets (ATLASR12 and ISLES2018), we show that HUT can perform and generalize well on different datasets. Code is available at: https://github.com/vicsohntu/HUT_CT .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重笑南发布了新的文献求助10
刚刚
ying完成签到,获得积分10
1秒前
落寞白曼完成签到,获得积分10
2秒前
4秒前
Leo完成签到,获得积分10
5秒前
谷子完成签到 ,获得积分10
7秒前
y.发布了新的文献求助10
8秒前
Cxxxx完成签到 ,获得积分10
8秒前
倩倩完成签到 ,获得积分10
8秒前
CL完成签到,获得积分10
8秒前
jimmyhui完成签到,获得积分10
8秒前
8秒前
燕熙完成签到 ,获得积分10
10秒前
正直的语蝶完成签到,获得积分20
11秒前
lhl完成签到,获得积分10
11秒前
fdpb完成签到,获得积分10
11秒前
thadzhou完成签到,获得积分10
12秒前
zaozao完成签到,获得积分10
13秒前
燕子完成签到,获得积分10
13秒前
jimmyhui发布了新的文献求助10
14秒前
chenjun7080完成签到,获得积分10
14秒前
霹雳小土豆-完成签到,获得积分0
14秒前
杂化轨道退役研究员完成签到,获得积分10
15秒前
姜茶完成签到 ,获得积分10
16秒前
16秒前
传奇3应助老迟到的微笑采纳,获得10
16秒前
ZSHAN完成签到,获得积分10
17秒前
18秒前
WW完成签到 ,获得积分10
18秒前
shiqi1108完成签到 ,获得积分10
19秒前
LS完成签到,获得积分10
20秒前
行者无疆完成签到,获得积分10
20秒前
卜哥完成签到,获得积分10
20秒前
昭昭发布了新的文献求助10
21秒前
稳重笑南完成签到,获得积分20
21秒前
15122303完成签到,获得积分10
22秒前
小胡子完成签到,获得积分20
22秒前
22秒前
FashionBoy应助阔达以山采纳,获得10
23秒前
佰斯特威完成签到,获得积分0
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
《博弈论》--连山 pdf电子书 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767157
求助须知:如何正确求助?哪些是违规求助? 3311640
关于积分的说明 10159271
捐赠科研通 3026924
什么是DOI,文献DOI怎么找? 1661357
邀请新用户注册赠送积分活动 793990
科研通“疑难数据库(出版商)”最低求助积分说明 755920