Energy Consumption Modeling and Optimization of UAV-Assisted MEC Networks Using Deep Reinforcement Learning

强化学习 能源消耗 计算机科学 趋同(经济学) 最优化问题 过程(计算) 能量(信号处理) 人工智能 分布式计算 数学优化 工程类 电气工程 统计 数学 算法 经济 经济增长 操作系统
作者
Ming Yan,Litong Zhang,Wei Jiang,Chien Aun Chan,André F. Gygax,Ampalavanapillai Nirmalathas
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (8): 13629-13639 被引量:5
标识
DOI:10.1109/jsen.2024.3370924
摘要

Unmanned aerial vehicle (UAV)-assisted multiaccess edge computing (MEC) technology has garnered significant attention and has been successfully implemented in specific scenarios. The optimization of the network energy consumption in the relevant scenarios is essential for the whole system performance due to the constrained energy capacity of UAVs. However, the dynamic changes in MEC network resources make energy consumption optimization a challenge. In this article, a multi-UAV-multiuser MEC model is established to assess the system energy consumption, and the optimization problem of multi-UAV cooperation strategies is formulated based on the model. Then, a multiagent deep deterministic policy gradient (MADDPG) algorithm based on deep reinforcement learning (DRL) is employed to resolve the above optimization problem. Each UAV is equivalent to a single agent that cooperates with other agents to train actors and critic evaluation networks to accomplish collaborative decision-making. In addition, a prioritized experience replay (PER) scheme is used to improve the convergence of the training process. Simulation results show the impact of changes in different network resources on the network energy consumption by comparing the performance of different algorithms. The findings presented in this article serve as a valuable reference for future work on system performance optimization, specifically in terms of energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rr完成签到,获得积分10
刚刚
ding应助TT001采纳,获得10
1秒前
2秒前
项彼夜完成签到,获得积分10
2秒前
开心香岚发布了新的文献求助10
2秒前
Jerry完成签到,获得积分10
4秒前
4秒前
桐桐应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
yier应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得30
7秒前
子车茗应助科研通管家采纳,获得30
7秒前
喽喽完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
foxp3完成签到,获得积分10
8秒前
走过的风发布了新的文献求助10
9秒前
开心香岚完成签到,获得积分10
9秒前
臧晓蕾发布了新的文献求助10
11秒前
爱听歌的夏烟完成签到,获得积分10
11秒前
时尚的冰棍儿完成签到 ,获得积分0
12秒前
喽喽发布了新的文献求助30
12秒前
张小小发布了新的文献求助10
14秒前
果果应助高胜寒采纳,获得10
14秒前
14秒前
华仔应助livo采纳,获得10
14秒前
方向发布了新的文献求助10
15秒前
Sylvia完成签到,获得积分10
15秒前
orixero应助af采纳,获得10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430