Prediction of Disease-Free Survival in Breast Cancer using Deep Learning with Ultrasound and Mammography: A Multicenter Study

医学 乳腺摄影术 乳腺癌 超声波 比例危险模型 疾病 肿瘤科 病态的 癌症 放射科 内科学
作者
Junqi Han,Hui Hua,Fei Jie,Jingjing Liu,Yijun Guo,Wenjuan Ma,Jingjing Chen
出处
期刊:Clinical Breast Cancer [Elsevier BV]
卷期号:24 (3): 215-226 被引量:6
标识
DOI:10.1016/j.clbc.2024.01.005
摘要

Breast cancer is a leading cause of cancer morbility and mortality in women. The possibility of overtreatment or inappropriate treatment exists, and methods for evaluating prognosis need to be improved.Patients (from January 2013 to December 2018) were recruited and divided into a training group and a testing group. All patients were followed for more than 3 years. Patients were divided into a disease-free group and a recurrence group based on follow up results at 3 years. Ultrasound (US) and mammography (MG) images were collected to establish deep learning models (DLMs) using ResNet50. Clinical data, MG, and US characteristics were collected to select independent prognostic factors using a cox proportional hazards model to establish a clinical model. DLM and independent prognostic factors were combined to establish a combined model.In total, 1242 patients were included. Independent prognostic factors included age, neoadjuvant chemotherapy, HER2, orientation, blood flow, dubious calcification, and size. We established 5 models: the US DLM, MG DLM, US + MG DLM, clinical and combined model. The combined model using US images, MG images, and pathological, clinical, and radiographic characteristics had the highest predictive performance (AUC = 0.882 in the training group, AUC = 0.739 in the testing group).DLMs based on the combination of US, MG, and clinical data have potential as predictive tools for breast cancer prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
精明的冰枫完成签到,获得积分10
3秒前
orixero应助善良的采柳采纳,获得30
3秒前
CHN151完成签到,获得积分10
4秒前
科研通AI5应助王肄博采纳,获得10
4秒前
所所应助sugar-woods采纳,获得10
6秒前
7秒前
tyhg完成签到,获得积分10
7秒前
8秒前
9秒前
Lliu完成签到,获得积分10
10秒前
顾矜应助我爱学习采纳,获得10
11秒前
QR发布了新的文献求助10
11秒前
11秒前
tyhg发布了新的文献求助10
12秒前
Ava应助小开采纳,获得10
12秒前
12秒前
14秒前
风中的嘉熙完成签到,获得积分10
17秒前
111发布了新的文献求助10
17秒前
半栀完成签到,获得积分10
18秒前
我是老大应助cij123采纳,获得10
20秒前
落叶完成签到 ,获得积分20
22秒前
王肄博发布了新的文献求助10
23秒前
happiness完成签到 ,获得积分10
23秒前
活泼蜜蜂完成签到,获得积分10
24秒前
小开完成签到,获得积分10
24秒前
害怕的蜻蜓完成签到,获得积分10
25秒前
12完成签到 ,获得积分10
25秒前
26秒前
28秒前
juju完成签到,获得积分10
28秒前
超帅觅柔完成签到,获得积分10
29秒前
珊珊发布了新的文献求助10
29秒前
29秒前
汪汪完成签到,获得积分10
32秒前
32秒前
阳光雨露完成签到,获得积分10
32秒前
33秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756737
求助须知:如何正确求助?哪些是违规求助? 3300155
关于积分的说明 10112592
捐赠科研通 3014665
什么是DOI,文献DOI怎么找? 1655622
邀请新用户注册赠送积分活动 790048
科研通“疑难数据库(出版商)”最低求助积分说明 753552