Prediction of Disease-Free Survival in Breast Cancer using Deep Learning with Ultrasound and Mammography: A Multicenter Study

医学 乳腺摄影术 乳腺癌 超声波 疾病 肿瘤科 多中心研究 癌症 放射科 内科学 随机对照试验
作者
Junqi Han,Hui Hua,Jie Fei,Jingjing Liu,Yiming Guo,Wenjuan Ma,Xiaolin Wang
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:24 (3): 215-226
标识
DOI:10.1016/j.clbc.2024.01.005
摘要

Breast cancer is a leading cause of cancer morbility and mortality in women. The possibility of overtreatment or inappropriate treatment exists, and methods for evaluating prognosis need to be improved.Patients (from January 2013 to December 2018) were recruited and divided into a training group and a testing group. All patients were followed for more than 3 years. Patients were divided into a disease-free group and a recurrence group based on follow up results at 3 years. Ultrasound (US) and mammography (MG) images were collected to establish deep learning models (DLMs) using ResNet50. Clinical data, MG, and US characteristics were collected to select independent prognostic factors using a cox proportional hazards model to establish a clinical model. DLM and independent prognostic factors were combined to establish a combined model.In total, 1242 patients were included. Independent prognostic factors included age, neoadjuvant chemotherapy, HER2, orientation, blood flow, dubious calcification, and size. We established 5 models: the US DLM, MG DLM, US + MG DLM, clinical and combined model. The combined model using US images, MG images, and pathological, clinical, and radiographic characteristics had the highest predictive performance (AUC = 0.882 in the training group, AUC = 0.739 in the testing group).DLMs based on the combination of US, MG, and clinical data have potential as predictive tools for breast cancer prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助淡定小白菜采纳,获得10
1秒前
laoli2022发布了新的文献求助10
1秒前
36456657应助高高白曼舞采纳,获得50
1秒前
2秒前
jjjwln发布了新的文献求助10
2秒前
cc发布了新的文献求助10
2秒前
3秒前
苗条曲奇发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
REN应助专注的以松采纳,获得20
6秒前
酷波er应助凹凸先森采纳,获得10
6秒前
英俊的铭应助凹凸先森采纳,获得10
6秒前
小马甲应助凹凸先森采纳,获得10
6秒前
7秒前
迎风竹林下应助guozizi采纳,获得10
8秒前
markerfxq发布了新的文献求助10
8秒前
张力大砖飞人完成签到 ,获得积分10
8秒前
mochi完成签到,获得积分10
8秒前
废寝忘食完成签到,获得积分10
8秒前
8秒前
Lllll发布了新的文献求助10
9秒前
9秒前
zuoqibin发布了新的文献求助10
10秒前
Nn发布了新的文献求助10
10秒前
情怀应助ao123采纳,获得30
10秒前
田様应助dezhi采纳,获得15
10秒前
11秒前
mochi发布了新的文献求助10
11秒前
拾一完成签到,获得积分10
11秒前
青鸭完成签到,获得积分10
11秒前
ZWQ完成签到,获得积分10
12秒前
12秒前
Orange应助病猫不发威采纳,获得10
13秒前
称心的御姐完成签到,获得积分10
13秒前
专注世界发布了新的文献求助10
13秒前
13秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3411077
求助须知:如何正确求助?哪些是违规求助? 3014545
关于积分的说明 8864373
捐赠科研通 2702074
什么是DOI,文献DOI怎么找? 1481422
科研通“疑难数据库(出版商)”最低求助积分说明 684839
邀请新用户注册赠送积分活动 679351