Prediction of Gleason score in prostate cancer patients based on radiomic features of transrectal ultrasound images

医学 随机森林 前列腺癌 超声波 接收机工作特性 前列腺 曲线下面积 数据集 核医学 放射科 癌症 人工智能 内科学 计算机科学
作者
Tao Cheng,Huiming Li
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:97 (1154): 415-421
标识
DOI:10.1093/bjr/tqad036
摘要

Abstract Objectives The aim of this study was to develop a model for predicting the Gleason score of patients with prostate cancer based on ultrasound images. Methods Transrectal ultrasound images of 838 prostate cancer patients from The Cancer Imaging Archive database were included in this cross-section study. Data were randomly divided into the training set and testing set (ratio 7:3). A total of 103 radiomic features were extracted from the ultrasound image. Lasso regression was used to select radiomic features. Random forest and broad learning system (BLS) methods were utilized to develop the model. The area under the curve (AUC) was calculated to evaluate the model performance. Results After the screening, 10 radiomic features were selected. The AUC and accuracy of the radiomic feature variables random forest model in the testing set were 0.727 (95% CI, 0.694-0.760) and 0.646 (95% CI, 0.620-0.673), respectively. When PSA and radiomic feature variables were included in the random forest model, the AUC and accuracy of the model were 0.770 (95% CI, 0.740-0.800) and 0.713 (95% CI, 0.688-0.738), respectively. While the BLS method was utilized to construct the model, the AUC and accuracy of the model were 0.726 (95% CI, 0.693-0.759) and 0.698 (95% CI, 0.673-0.723), respectively. In predictions for different Gleason grades, the highest AUC of 0.847 (95% CI, 0.749-0.945) was found to predict Gleason grade 5 (Gleason score ≥9). Conclusions A model based on transrectal ultrasound image features showed a good ability to predict Gleason scores in prostate cancer patients. Advances in knowledge This study used ultrasound-based radiomics to predict the Gleason score of patients with prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sobremasa完成签到,获得积分10
3秒前
活力翠霜发布了新的文献求助20
3秒前
zhaoyang完成签到 ,获得积分10
3秒前
3秒前
dochx完成签到,获得积分10
4秒前
务实的凝天完成签到,获得积分10
5秒前
5秒前
大模型应助Muzz采纳,获得10
6秒前
6秒前
斯文败类应助务实的凝天采纳,获得10
9秒前
9秒前
acuter发布了新的文献求助10
9秒前
张秋雨发布了新的文献求助30
10秒前
林卷卷完成签到,获得积分10
11秒前
冰淇淋啦啦啦完成签到,获得积分20
11秒前
12秒前
zinc完成签到,获得积分10
12秒前
16秒前
17秒前
今后应助葛擎苍采纳,获得10
18秒前
20秒前
21秒前
可爱的函函应助张秋雨采纳,获得10
21秒前
科研的打工狗完成签到,获得积分10
22秒前
25秒前
北雨发布了新的文献求助10
27秒前
旷野天完成签到,获得积分10
28秒前
yanglian2003完成签到 ,获得积分10
30秒前
yyauthor发布了新的文献求助20
30秒前
牛奶秋刀鱼完成签到,获得积分10
31秒前
彭于晏应助机智羞花采纳,获得10
32秒前
32秒前
羊羊羊发布了新的文献求助10
34秒前
传奇3应助小娜娜采纳,获得10
34秒前
38秒前
haowu发布了新的文献求助10
38秒前
MoonFlows应助年轻的熊猫采纳,获得20
38秒前
vickeylea完成签到,获得积分10
38秒前
38秒前
LGZ完成签到 ,获得积分0
38秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157313
求助须知:如何正确求助?哪些是违规求助? 2808757
关于积分的说明 7878369
捐赠科研通 2467114
什么是DOI,文献DOI怎么找? 1313219
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919