Prediction of Gleason score in prostate cancer patients based on radiomic features of transrectal ultrasound images

医学 随机森林 前列腺癌 超声波 接收机工作特性 前列腺 曲线下面积 数据集 核医学 放射科 癌症 人工智能 内科学 计算机科学
作者
Tao Cheng,Huiming Li
出处
期刊:British Journal of Radiology [Wiley]
卷期号:97 (1154): 415-421
标识
DOI:10.1093/bjr/tqad036
摘要

Abstract Objectives The aim of this study was to develop a model for predicting the Gleason score of patients with prostate cancer based on ultrasound images. Methods Transrectal ultrasound images of 838 prostate cancer patients from The Cancer Imaging Archive database were included in this cross-section study. Data were randomly divided into the training set and testing set (ratio 7:3). A total of 103 radiomic features were extracted from the ultrasound image. Lasso regression was used to select radiomic features. Random forest and broad learning system (BLS) methods were utilized to develop the model. The area under the curve (AUC) was calculated to evaluate the model performance. Results After the screening, 10 radiomic features were selected. The AUC and accuracy of the radiomic feature variables random forest model in the testing set were 0.727 (95% CI, 0.694-0.760) and 0.646 (95% CI, 0.620-0.673), respectively. When PSA and radiomic feature variables were included in the random forest model, the AUC and accuracy of the model were 0.770 (95% CI, 0.740-0.800) and 0.713 (95% CI, 0.688-0.738), respectively. While the BLS method was utilized to construct the model, the AUC and accuracy of the model were 0.726 (95% CI, 0.693-0.759) and 0.698 (95% CI, 0.673-0.723), respectively. In predictions for different Gleason grades, the highest AUC of 0.847 (95% CI, 0.749-0.945) was found to predict Gleason grade 5 (Gleason score ≥9). Conclusions A model based on transrectal ultrasound image features showed a good ability to predict Gleason scores in prostate cancer patients. Advances in knowledge This study used ultrasound-based radiomics to predict the Gleason score of patients with prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dan完成签到,获得积分10
3秒前
隋磊发布了新的文献求助30
4秒前
4秒前
6秒前
噗噗星完成签到,获得积分20
7秒前
dyem发布了新的文献求助30
8秒前
慕青应助背后城采纳,获得10
9秒前
果果完成签到,获得积分10
9秒前
dongdongqiang发布了新的文献求助50
10秒前
冷傲凝琴完成签到,获得积分10
11秒前
李健应助pengchengxi采纳,获得10
12秒前
12秒前
fishmire发布了新的文献求助10
12秒前
哈哈哈完成签到,获得积分10
15秒前
俊逸的灵雁完成签到,获得积分20
17秒前
dyem完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
23秒前
ding应助隋磊采纳,获得10
24秒前
24秒前
Fqdgest发布了新的文献求助10
26秒前
26秒前
27秒前
27秒前
骤雨时晴发布了新的文献求助10
28秒前
sss发布了新的文献求助10
29秒前
orixero应助hikh采纳,获得10
29秒前
30秒前
30秒前
FashionBoy应助fishmire采纳,获得10
31秒前
小熊跳舞完成签到,获得积分10
31秒前
32秒前
miuu发布了新的文献求助10
32秒前
研友_VZG7GZ应助dongdongqiang采纳,获得30
32秒前
CodeCraft应助cc采纳,获得10
33秒前
33秒前
博学为农完成签到,获得积分10
34秒前
小熊跳舞发布了新的文献求助10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962236
求助须知:如何正确求助?哪些是违规求助? 3508458
关于积分的说明 11140902
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382