Prediction of Gleason score in prostate cancer patients based on radiomic features of transrectal ultrasound images

医学 随机森林 前列腺癌 超声波 接收机工作特性 前列腺 曲线下面积 数据集 核医学 放射科 癌症 人工智能 内科学 计算机科学
作者
Tao Cheng,Huiming Li
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:97 (1154): 415-421 被引量:3
标识
DOI:10.1093/bjr/tqad036
摘要

Abstract Objectives The aim of this study was to develop a model for predicting the Gleason score of patients with prostate cancer based on ultrasound images. Methods Transrectal ultrasound images of 838 prostate cancer patients from The Cancer Imaging Archive database were included in this cross-section study. Data were randomly divided into the training set and testing set (ratio 7:3). A total of 103 radiomic features were extracted from the ultrasound image. Lasso regression was used to select radiomic features. Random forest and broad learning system (BLS) methods were utilized to develop the model. The area under the curve (AUC) was calculated to evaluate the model performance. Results After the screening, 10 radiomic features were selected. The AUC and accuracy of the radiomic feature variables random forest model in the testing set were 0.727 (95% CI, 0.694-0.760) and 0.646 (95% CI, 0.620-0.673), respectively. When PSA and radiomic feature variables were included in the random forest model, the AUC and accuracy of the model were 0.770 (95% CI, 0.740-0.800) and 0.713 (95% CI, 0.688-0.738), respectively. While the BLS method was utilized to construct the model, the AUC and accuracy of the model were 0.726 (95% CI, 0.693-0.759) and 0.698 (95% CI, 0.673-0.723), respectively. In predictions for different Gleason grades, the highest AUC of 0.847 (95% CI, 0.749-0.945) was found to predict Gleason grade 5 (Gleason score ≥9). Conclusions A model based on transrectal ultrasound image features showed a good ability to predict Gleason scores in prostate cancer patients. Advances in knowledge This study used ultrasound-based radiomics to predict the Gleason score of patients with prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助jinjun采纳,获得10
刚刚
芜湖发布了新的文献求助10
1秒前
Jasper应助魔幻的迎松采纳,获得10
1秒前
5秒前
研友_VZG7GZ应助思维隋采纳,获得10
6秒前
6秒前
传奇3应助着急的滑板采纳,获得10
7秒前
8秒前
海胆菌完成签到,获得积分10
9秒前
于木完成签到 ,获得积分10
10秒前
11秒前
11秒前
科研q完成签到 ,获得积分10
11秒前
hnxxangel发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
嘉悦发布了新的文献求助10
13秒前
14秒前
14秒前
星辰大海应助hnxxangel采纳,获得10
16秒前
Lifel发布了新的文献求助10
16秒前
LZJ发布了新的文献求助10
17秒前
JJ发布了新的文献求助10
19秒前
思维隋发布了新的文献求助10
19秒前
科研通AI6应助爱吃香菜采纳,获得10
23秒前
23秒前
23秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
阳佟水蓉完成签到,获得积分10
26秒前
27秒前
沉静的蜗牛完成签到,获得积分10
28秒前
28秒前
sakura完成签到,获得积分10
29秒前
29秒前
花花发布了新的文献求助10
31秒前
sakura发布了新的文献求助10
33秒前
34秒前
Jasper应助典希子采纳,获得10
35秒前
36秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454502
求助须知:如何正确求助?哪些是违规求助? 4561872
关于积分的说明 14283729
捐赠科研通 4485731
什么是DOI,文献DOI怎么找? 2456949
邀请新用户注册赠送积分活动 1447620
关于科研通互助平台的介绍 1422846