计算机科学
管道(软件)
预处理器
数字化病理学
分割
人工智能
模式识别(心理学)
特征提取
特征(语言学)
浆液性液体
H&E染色
图像分割
计算机视觉
病理
免疫组织化学
医学
哲学
语言学
程序设计语言
作者
Valeria Ariotta,Oskari Lehtonen,Shadi Salloum,G Micoli,Kari Lavikka,Ville Rantanen,Johanna Hynninen,Anni Virtanen,Sampsa Hautaniemi
标识
DOI:10.1016/j.jpi.2023.100339
摘要
Detecting cell types from histopathological images is essential for various digital pathology applications. However, large number of cells in whole-slide images (WSIs) necessitates automated analysis pipelines for efficient cell type detection. Herein, we present hematoxylin and eosin (H&E) Image Processing pipeline (HEIP) for automatically analyzing scanned H&E-stained slides. HEIP is a flexible and modular open-source software that performs preprocessing, instance segmentation, and nuclei feature extraction. To evaluate the performance of HEIP, we applied it to extract cell types from ovarian high-grade serous carcinoma (HGSC) patient WSIs. HEIP showed high precision in instance segmentation, particularly for neoplastic and epithelial cells. We also show that there is a significant correlation between genomic ploidy values and morphological features, such as major axis of the nucleus.
科研通智能强力驱动
Strongly Powered by AbleSci AI